jump to searchjump to navigationjump to content

Publications - Cell and Metabolic Biology

Sort by: Year Type of publication

Displaying results 231 to 240 of 480.

Publications

Fedorova, M.; Frolov, A.; Hoffmann, R.; Fragmentation behavior of Amadori-peptides obtained by non-enzymatic glycosylation of lysine residues with ADP-ribose in tandem mass spectrometry J. Mass Spectrom. 45, 664-669, (2010) DOI: 10.1002/jms.1758

Mono‐ and poly‐adenosine diphosphate (ADP)‐ribosylation are common post‐translational modifications incorporated by sequence‐specific enzymes at, predominantly, arginine, asparagine, glutamic acid or aspartic acid residues, whereas non‐enzymatic ADP‐ribosylation (glycation) modifies lysine and cysteine residues. These glycated proteins and peptides (Amadori‐compounds) are commonly found in organisms, but have so far not been investigated to any great degree. In this study, we have analyzed their fragmentation characteristics using different mass spectrometry (MS) techniques. In matrix‐assisted laser desorption/ionization (MALDI)‐MS, the ADP‐ribosyl group was cleaved, almost completely, at the pyrophosphate bond by in‐source decay. In contrast, this cleavage was very weak in electrospray ionization (ESI)‐MS. The same fragmentation site also dominated the MALDI‐PSD (post‐source decay) and ESI‐CID (collision‐induced dissociation) mass spectra. The remaining phospho‐ribosyl group (formed by the loss of adenosine monophosphate) was stable, providing a direct and reliable identification of the modification site via the b‐ and y‐ion series. Cleavage of the ADP‐ribose pyrophosphate bond under CID conditions gives access to both neutral loss (347.10 u) and precursor‐ion scans (m/z 348.08), and thereby permits the identification of ADP‐ribosylated peptides in complex mixtures with high sensitivity and specificity. With electron transfer dissociation (ETD), the ADP‐ribosyl group was stable, providing ADP‐ribosylated c‐ and z‐ions, and thus allowing reliable sequence analyses.
Publications

Ehrlich, H.; Hanke, T.; Simon, P.; Born, R.; Fischer, C.; Frolov, A.; Langrock, T.; Hoffmann, R.; Schwarzenbolz, U.; Henle, T.; Bazhenov, V. V.; Worch, H.; Carboxymethylation of the fibrillar collagen with respect to formation of hydroxyapatite J. Biomed. Mater. Res. B 92B, 542-551, (2010) DOI: 10.1002/jbm.b.31551

Control over crystal growth by acidic matrix macromolecules is an important process in the formation of many mineralized tissues. Highly acidic macromolecules are postulated intermediates in tissue mineralization, because they sequester many calcium ions and occur in high concentrations at mineralizing foci in distantly related organisms. A prerequisite for biomineralization is the ability of cations like calcium to bind to proteins and to result in concert with appropriate anions like phosphates or carbonates in composite materials with bone‐like properties. For this mineralization process the proteins have to be modified with respect to acidification. In this study we modified the protein collagen by carboxymethylation using glucuronic acid. Our experiments showed unambigously, that Nε‐carboxymethyllysine is the major product of the in vitro nonenzymatic glycation reaction between glucuronic acid and collagen. We hypothesized that the function of biomimetically carboxymethylated collagen is to increase the local concentration of corresponding ions so that a critical nucleus of ions can be formed, leading to the formation of the mineral. Thus, the self‐organization of HAP nanocrystals on and within collagen fibrils was intensified by carboxymethylation.
Publications

Breuillin, F.; Schramm, J.; Hajirezaei, M.; Ahkami, A.; Favre, P.; Druege, U.; Hause, B.; Bucher, M.; Kretzschmar, T.; Bossolini, E.; Kuhlemeier, C.; Martinoia, E.; Franken, P.; Scholz, U.; Reinhardt, D.; Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning Plant J. 64, 1002-1017, (2010) DOI: 10.1111/j.1365-313X.2010.04385.x

Most terrestrial plants form arbuscular mycorrhiza (AM), mutualistic associations with soil fungi of the order Glomeromycota. The obligate biotrophic fungi trade mineral nutrients, mainly phosphate (Pi), for carbohydrates from the plants. Under conditions of high exogenous phosphate supply, when the plant can meet its own P requirements without the fungus, AM are suppressed, an effect which could be interpreted as an active strategy of the plant to limit carbohydrate consumption of the fungus by inhibiting its proliferation in the roots. However, the mechanisms involved in fungal inhibition are poorly understood. Here, we employ a transcriptomic approach to get insight into potential shifts in metabolic activity and symbiotic signalling, and in the defence status of plants exposed to high Pi levels. We show that in mycorrhizal roots of petunia, a similar set of symbiosis‐related genes is expressed as in mycorrhizal roots of Medicago, Lotus and rice. Pi acts systemically to repress symbiotic gene expression and AM colonization in the root. In established mycorrhizal roots, Pi repressed symbiotic gene expression rapidly, whereas the inhibition of colonization followed with a lag of more than a week. Taken together, these results suggest that Pi acts by repressing essential symbiotic genes, in particular genes encoding enzymes of carotenoid and strigolactone biosynthesis, and symbiosis‐associated phosphate transporters. The role of these effects in the suppression of symbiosis under high Pi conditions is discussed.
Publications

Wolfram, K.; Schmidt, J.; Wray, V.; Milkowski, C.; Schliemann, W.; Strack, D.; Profiling of phenylpropanoids in transgenic low-sinapine oilseed rape (Brassica napus) Phytochemistry 71, 1076-1084, (2010) DOI: 10.1016/j.phytochem.2010.04.007

A dsRNAi approach silencing a key enzyme of sinapate ester biosynthesis (UDP-glucose:sinapate glucosyltransferase, encoded by the UGT84A9 gene) in oilseed rape (Brassica napus) seeds was performed to reduce the anti-nutritive properties of the seeds by lowering the content of the major seed component sinapine (sinapoylcholine) and various minor sinapate esters. The transgenic seeds have been produced so far to the T6 generation and revealed a steady suppression of sinapate ester accumulation. HPLC analysis of the wild-type and transgenic seeds revealed, as in the previous generations, marked alterations of the sinapate ester pattern of the transformed seeds. Besides strong reduction of the amount of the known sinapate esters, HPLC analysis revealed unexpectedly the appearance of several minor hitherto unknown rapeseed constituents. These compounds were isolated and identified by mass spectrometric and NMR spectroscopic analyses. Structures of 11 components were elucidated to be 4-O-glucosides of syringate, caffeyl alcohol and its 7,8-dihydro derivative as well as of sinapate and sinapine, along with sinapoylated kaempferol glycosides, a hexoside of a cyclic spermidine alkaloid and a sinapine derivative with an ether-bridge to a C6–C3-unit. These results indicate a strong impact of the transgenic approach on the metabolic network of phenylpropanoids in B. napus seeds. Silencing of UGT84A9 gene expression disrupt the metabolic flow through sinapoylglucose and alters the amounts and nature of the phenylpropanoid endproducts.
Publications

Weichert, N.; Saalbach, I.; Weichert, H.; Kohl, S.; Erban, A.; Kopka, J.; Hause, B.; Varshney, A.; Sreenivasulu, N.; Strickert, M.; Kumlehn, J.; Weschke, W.; Weber, H.; Increasing Sucrose Uptake Capacity of Wheat Grains Stimulates Storage Protein Synthesis Plant Physiol. 152, 698-710, (2010) DOI: 10.1104/pp.109.150854

Increasing grain sink strength by improving assimilate uptake capacity could be a promising approach toward getting higher yield. The barley (Hordeum vulgare) sucrose transporter HvSUT1 (SUT) was expressed under control of the endosperm-specific Hordein B1 promoter (HO). Compared with the wild type, transgenic HOSUT grains take up more sucrose (Suc) in vitro, showing that the transgene is functional. Grain Suc levels are not altered, indicating that Suc fluxes are influenced rather than steady-state levels. HOSUT grains have increased percentages of total nitrogen and prolamins, which is reflected in increased levels of phenylalanine, tyrosine, tryptophan, isoleucine, and leucine at late grain development. Transcript profiling indicates specific stimulation of prolamin gene expression at the onset of storage phase. Changes in gene expression and metabolite levels related to carbon metabolism and amino acid biosynthesis suggest deregulated carbon-nitrogen balance, which together indicate carbon sufficiency and relative depletion of nitrogen. Genes, deregulated together with prolamin genes, might represent candidates, which respond positively to assimilate supply and are related to sugar-starch metabolism, cytokinin and brassinosteroid functions, cell proliferation, and sugar/abscisic acid signaling. Genes showing inverse expression patterns represent potential negative regulators. It is concluded that HvSUT1 overexpression increases grain protein content but also deregulates the metabolic status of wheat (Triticum aestivum) grains, accompanied by up-regulated gene expression of positive and negative regulators related to sugar signaling and assimilate supply. In HOSUT grains, alternating stimulation of positive and negative regulators causes oscillatory patterns of gene expression and highlights the capacity and great flexibility to adjust wheat grain storage metabolism in response to metabolic alterations.
Publications

Walter, M. H.; Floss, D. S.; Strack, D.; Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles Planta 232, 1-17, (2010) DOI: 10.1007/s00425-010-1156-3

Apocarotenoids are tailored from carotenoids by oxidative enzymes [carotenoid cleavage oxygenases (CCOs)], cleaving specific double bonds of the polyene chain. The cleavage products can act as hormones, signaling compounds, chromophores and scent/aroma constituents. Recent advances were the identification of strigolactones as apocarotenoids and the description of their novel role as shoot branching inhibitor hormones. Strigolactones are also involved in plant signaling to both harmful (parasitic weeds) and beneficial [arbuscular mycorrhizal (AM) fungi] rhizosphere residents. This review describes the progress in the characterization of CCOs, termed CCDs and NCEDs, in plants. It highlights the importance of sequential cleavage reactions of C40 carotenoid precursors, the apocarotenoid cleavage oxygenase (ACO) nature of several CCOs and the topic of compartmentation. Work on the biosynthesis of abundant C13 cyclohexenone and C14 mycorradicin apocarotenoids in mycorrhizal roots has revealed a new role of CCD1 as an ACO of C27 apocarotenoid intermediates, following their predicted export from plastid to cytosol. Manipulation of the AM-induced apocarotenoid pathway further suggests novel roles of C13 apocarotenoids in controlling arbuscule turnover in the AM symbiosis. CCD7 has been established as a biosynthetic crosspoint, controlling both strigolactone and AM-induced C13 apocarotenoid biosynthesis. Interdependence of the two apocarotenoid pathways may thus play a role in AM-mediated reduction of parasitic weed infestations. Potential scenarios of C13 scent/aroma volatile biogenesis are discussed, including the novel mechanism revealed from mycorrhizal roots. The recent progress in apocarotenoid research opens up new perspectives for fundamental work, but has also great application potential for the horticulture, food and fragrance industries.
Publications

Vogt, T.; Phenylpropanoid Biosynthesis Mol. Plant 3, 2-20, (2010) DOI: 10.1093/mp/ssp106

The general phenylpropanoid metabolism generates an enormous array of secondary metabolites based on the few intermediates of the shikimate pathway as the core unit. The resulting hydroxycinnamic acids and esters are amplified in several cascades by a combination of reductases, oxygenases, and transferases to result in an organ and developmentally specific pattern of metabolites, characteristic for each plant species. During the last decade, methodology driven targeted and non-targeted approaches in several plant species have enabled the identification of the participating enzymes of this complex biosynthetic machinery, and revealed numerous genes, enzymes, and metabolites essential for regulation and compartmentation. Considerable success in structural and computational biology, combined with the analytical sensitivity to detect even trace compounds and smallest changes in the metabolite, transcript, or enzyme pattern, has facilitated progress towards a comprehensive view of the plant response to its biotic and abiotic environment. Transgenic approaches have been used to reveal insights into an apparently redundant gene and enzyme pattern required for functional integrity and plasticity of the various phenylpropanoid biosynthetic pathways. Nevertheless, the function and impact of all members of a gene family remain to be completely established. This review aims to give an update on the various facets of the general phenylpropanoid pathway, which is not only restricted to common lignin or flavonoid biosynthesis, but feeds into a variety of other aromatic metabolites like coumarins, phenolic volatiles, or hydrolyzable tannins.
Publications

Vogel, J. T.; Walter, M. H.; Giavalisco, P.; Lytovchenko, A.; Kohlen, W.; Charnikhova, T.; Simkin, A. J.; Goulet, C.; Strack, D.; Bouwmeester, H. J.; Fernie, A. R.; Klee, H. J.; SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato Plant J. 61, 300-311, (2010) DOI: 10.1111/j.1365-313X.2009.04056.x

The regulation of shoot branching is an essential determinant of plant architecture, integrating multiple external and internal signals. One of the signaling pathways regulating branching involves the MAX (more axillary branches) genes. Two of the genes within this pathway, MAX3/CCD7 and MAX4/CCD8, encode carotenoid cleavage enzymes involved in generating a branch‐inhibiting hormone, recently identified as strigolactone. Here, we report the cloning of SlCCD7 from tomato. As in other species, SlCCD7 encodes an enzyme capable of cleaving cyclic and acyclic carotenoids. However, the SlCCD7 protein has 30 additional amino acids of unknown function at its C terminus. Tomato plants expressing a SlCCD7 antisense construct display greatly increased branching. To reveal the underlying changes of this strong physiological phenotype, a metabolomic screen was conducted. With the exception of a reduction of stem amino acid content in the transgenic lines, no major changes were observed. In contrast, targeted analysis of the same plants revealed significantly decreased levels of strigolactone. There were no significant changes in root carotenoids, indicating that relatively little substrate is required to produce the bioactive strigolactones. The germination rate of Orobanche ramosa seeds was reduced by up to 90% on application of extract from the SlCCD7 antisense lines, compared with the wild type. Additionally, upon mycorrhizal colonization, C13 cyclohexenone and C14 mycorradicin apocarotenoid levels were greatly reduced in the roots of the antisense lines, implicating SlCCD7 in their biosynthesis. This work demonstrates the diverse roles of MAX3/CCD7 in strigolactone production, shoot branching, source–sink interactions and production of arbuscular mycorrhiza‐induced apocarotenoids.
Publications

Zurbriggen, M. D.; Carrillo, N.; Tognetti, V. B.; Melzer, M.; Peisker, M.; Hause, B.; Hajirezaei, M.-R.; Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria Plant J. 60, 962-973, (2009) DOI: 10.1111/j.1365-313X.2009.04010.x

Attempted infection of plants by pathogens elicits a complex defensive response. In many non‐host and incompatible host interactions it includes the induction of defence‐associated genes and a form of localized cell death (LCD), purportedly designed to restrict pathogen advance, collectively known as the hypersensitive response (HR). It is preceded by an oxidative burst, generating reactive oxygen species (ROS) that are proposed to cue subsequent deployment of the HR, although neither the origin nor the precise role played by ROS in the execution of this response are completely understood. We used tobacco plants expressing cyanobacterial flavodoxin to address these questions. Flavodoxin is an electron shuttle present in prokaryotes and algae that, when expressed in chloroplasts, specifically prevents ROS formation in plastids during abiotic stress episodes. Infiltration of tobacco wild‐type leaves with high titres of Xanthomonas campestris pv. vesicatoria (Xcv ), a non‐host pathogen, resulted in ROS accumulation in chloroplasts, followed by the appearance of localized lesions typical of the HR. In contrast, chloroplast ROS build‐up and LCD were significantly reduced in Xcv ‐inoculated plants expressing plastid‐targeted flavodoxin. Metabolic routes normally inhibited by pathogens were protected in the transformants, whereas other aspects of the HR, including the induction of defence‐associated genes and synthesis of salicylic and jasmonic acid, proceeded as in inoculated wild‐type plants. Therefore, ROS generated in chloroplasts during this non‐host interaction are essential for the progress of LCD, but do not contribute to the induction of pathogenesis‐related genes or other signalling components of the response.
Publications

Wasternack, C.; Hause, B.; Emerging complexity: jasmonate-induced volatiles affect parasitoid choice J. Exp. Bot. 60, 2451-2453, (2009) DOI: 10.1093/jxb/erp197

0
IPB Mainnav Search