jump to searchjump to navigationjump to content

Publications - Cell and Metabolic Biology

Sort by: Year Type of publication

Displaying results 221 to 230 of 480.

Publications

Paetzold, H.; Garms, S.; Bartram, S.; Wieczorek, J.; Urós-Gracia, E.-M.; Rodríguez-Concepción, M.; Boland, W.; Strack, D.; Hause, B.; Walter, M. H.; The Isogene 1-Deoxy-D-Xylulose 5-Phosphate Synthase 2 Controls Isoprenoid Profiles, Precursor Pathway Allocation, and Density of Tomato Trichomes Mol. Plant 3, 904-916, (2010) DOI: 10.1093/mp/ssq032

Plant isoprenoids are formed from precursors synthesized by the mevalonate (MVA) pathway in the cytosol or by the methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. Although some exchange of precursors occurs, cytosolic sesquiterpenes are assumed to derive mainly from MVA, while plastidial monoterpenes are produced preferentially from MEP precursors. Additional complexity arises in the first step of the MEP pathway, which is typically catalyzed by two divergent 1-deoxy-D-xylulose 5-phosphate synthase isoforms (DXS1, DXS2). In tomato (Solanum lycopersicum), the SlDXS1 gene is ubiquitously expressed with highest levels during fruit ripening, whereas SlDXS2 transcripts are abundant in only few tissues, including young leaves, petals, and isolated trichomes. Specific down-regulation of SlDXS2 expression was performed by RNA interference in transgenic plants to investigate feedback mechanisms. SlDXS2 down-regulation led to a decrease in the monoterpene β-phellandrene and an increase in two sesquiterpenes in trichomes. Moreover, incorporation of MVA-derived precursors into residual monoterpenes and into sesquiterpenes was elevated as determined by comparison of 13C to 12C natural isotope ratios. A compensatory up-regulation of SlDXS1 was not observed. Down-regulated lines also exhibited increased trichome density and showed less damage by leaf-feeding Spodoptera littoralis caterpillars. The results reveal novel, non-redundant roles of DXS2 in modulating isoprenoid metabolism and a pronounced plasticity in isoprenoid precursor allocation.
Publications

Mittasch, J.; Mikolajewski, S.; Breuer, F.; Strack, D.; Milkowski, C.; Genomic microstructure and differential expression of the genes encoding UDP-glucose:sinapate glucosyltransferase (UGT84A9) in oilseed rape (Brassica napus) Theor. Appl. Genet. 120, 1485-1500, (2010) DOI: 10.1007/s00122-010-1270-4

In oilseed rape (Brassica napus), the glucosyltransferase UGT84A9 catalyzes the formation of 1-O-sinapoyl-β-glucose, which feeds as acyl donor into a broad range of accumulating sinapate esters, including the major antinutritive seed component sinapoylcholine (sinapine). Since down-regulation of UGT84A9 was highly efficient in decreasing the sinapate ester content, the genes encoding this enzyme were considered as potential targets for molecular breeding of low sinapine oilseed rape. B. napus harbors two distinguishable sequence types of the UGT84A9 gene designated as UGT84A9-1 and UGT84A9-2. UGT84A9-1 is the predominantly expressed variant, which is significantly up-regulated during the seed filling phase, when sinapate ester biosynthesis exhibits strongest activity. In the allotetraploid genome of B. napus, UGT84A9-1 is represented by two loci, one derived from the Brassica C-genome (UGT84A9a) and one from the Brassica A-genome (UGT84A9b). Likewise, for UGT84A9-2 two loci were identified in B. napus originating from both diploid ancestor genomes (UGT84A9c, Brassica C-genome; UGT84A9d, Brassica A-genome). The distinct UGT84A9 loci were genetically mapped to linkage groups N15 (UGT84A9a), N05 (UGT84A9b), N11 (UGT84A9c) and N01 (UGT84A9d). All four UGT84A9 genomic loci from B. napus display a remarkably low micro-collinearity with the homologous genomic region of Arabidopsis thaliana chromosome III, but exhibit a high density of transposon-derived sequence elements. Expression patterns indicate that the orthologous genes UGT84A9a and UGT84A9b should be considered for mutagenesis inactivation to introduce the low sinapine trait into oilseed rape.
Publications

Milkowski, C.; Strack, D.; Sinapate esters in brassicaceous plants: biochemistry, molecular biology, evolution and metabolic engineering Planta 232, 19-35, (2010) DOI: 10.1007/s00425-010-1168-z

Brassicaceous plants are characterized by a pronounced metabolic flux toward sinapate, produced by the shikimate/phenylpropanoid pathway, which is converted into a broad spectrum of O-ester conjugates. The abundant sinapate esters in Brassica napus and Arabidopsis thaliana reflect a well-known metabolic network, including UDP-glucose:sinapate glucosyltransferase (SGT), sinapoylglucose:choline sinapoyltransferase (SCT), sinapoylglucose:l-malate sinapoyltransferase (SMT) and sinapoylcholine (sinapine) esterase (SCE). 1-O-Sinapoylglucose, produced by SGT during seed development, is converted to sinapine by SCT and hydrolyzed by SCE in germinating seeds. The released sinapate feeds via sinapoylglucose into the biosynthesis of sinapoylmalate in the seedlings catalyzed by SMT. Sinapoylmalate is involved in protecting the leaves against the deleterious effects of UV-B radiation. Sinapine might function as storage vehicle for ready supply of choline for phosphatidylcholine biosynthesis in young seedlings. The antinutritive character of sinapine and related sinapate esters hamper the use of the valuable seed protein of the oilseed crop B. napus for animal feed and human nutrition. Due to limited variation in seed sinapine content within the assortment of B. napus cultivars, low sinapine lines cannot be generated by conventional breeding giving rise to genetic engineering of sinapate ester metabolism as a promising means. In this article we review the progress made throughout the last decade in identification of genes involved in sinapate ester metabolism and characterization of the encoded enzymes. Based on gene structures and enzyme recruitment, evolution of sinapate ester metabolism is discussed. Strategies of targeted metabolic engineering, designed to generate low-sinapate ester lines of B. napus, are evaluated.
Publications

Mallona, I.; Lischewski, S.; Weiss, J.; Hause, B.; Egea-Cortines, M.; Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida BMC Plant Biol. 10, 4, (2010) DOI: 10.1186/1471-2229-10-4

BackgroundIdentification of genes with invariant levels of gene expression is a prerequisite for validating transcriptomic changes accompanying development. Ideally expression of these genes should be independent of the morphogenetic process or environmental condition tested as well as the methods used for RNA purification and analysis.ResultsIn an effort to identify endogenous genes meeting these criteria nine reference genes (RG) were tested in two Petunia lines (Mitchell and V30). Growth conditions differed in Mitchell and V30, and different methods were used for RNA isolation and analysis. Four different software tools were employed to analyze the data. We merged the four outputs by means of a non-weighted unsupervised rank aggregation method. The genes identified as optimal for transcriptomic analysis of Mitchell and V30 were EF1α in Mitchell and CYP in V30, whereas the least suitable gene was GAPDH in both lines.ConclusionsThe least adequate gene turned out to be GAPDH indicating that it should be rejected as reference gene in Petunia. The absence of correspondence of the best-suited genes suggests that assessing reference gene stability is needed when performing normalization of data from transcriptomic analysis of flower and leaf development.
Publications

Leitner, M.; Kaiser, R.; Hause, B.; Boland, W.; Mithöfer, A.; Does mycorrhization influence herbivore-induced volatile emission in Medicago truncatula? Mycorrhiza 20, 89-101, (2010) DOI: 10.1007/s00572-009-0264-z

Symbiosis with mycorrhizal fungi substantially impacts secondary metabolism and defensive traits of colonised plants. In the present study, we investigated the influence of mycorrhization (Glomus intraradices) on inducible indirect defences against herbivores using the model legume Medicago truncatula. Volatile emission by mycorrhizal and non-mycorrhizal plants was measured in reaction to damage inflicted by Spodoptera spp. and compared to the basal levels of volatile emission by plants of two different cultivars. Emitted volatiles were recorded using closed-loop stripping and gas chromatography/mass spectrometry. The documented volatile patterns were evaluated using multidimensional scaling to visualise patterns and stepwise linear discriminant analysis to distinguish volatile blends of plants with distinct physiological status and genetic background. Volatile blends emitted by different cultivars of M. truncatula prove to be clearly distinct, whereas mycorrhization only slightly influenced herbivore-induced volatile emissions. Still, the observed differences were sufficient to create classification rules to distinguish mycorrhizal and non-mycorrhizal plants by the volatiles emitted. Moreover, the effect of mycorrhization turned out to be opposed in the two cultivars examined. Root symbionts thus seem to alter indirect inducible defences of M. truncatula against insect herbivores. The impact of this effect strongly depends on the genetic background of the plant and, hence, in part explains the highly contradictory results on tripartite interactions gathered to date.
Publications

Kopertekh, L.; Schulze, K.; Frolov, A.; Strack, D.; Broer, I.; Schiemann, J.; Cre-mediated seed-specific transgene excision in tobacco Plant Mol. Biol. 72, 597-605, (2010) DOI: 10.1007/s11103-009-9595-6

Here we report the production of marker-free transgenic plants expressing phenolic compounds with high pharmacological value. Our strategy consisted in simultaneous delivery of lox-target and cre-containing constructs into the plant genome by cotransformation. In the Cre-vector, the cre recombinase gene was controlled by a seed-specific napin promoter. In the lox-target construct the selectable bar gene was placed between two lox sites in direct orientation, while a napin promoter driven vstI gene was inserted outside of the lox sites. Upon seed-specific cre induction the bar expression cassette was excised from the tobacco genome. Genetic and molecular analysis of T1 progeny plants indicated DNA excision in all 10 transgenic lines tested. RP-HPLC analysis demonstrated that the expression of the vstI gene resulted in accumulation of trans-resveratrol and its glycosylated derivative piceid in seeds of all marker free lines. These findings indicate that the seed-specific marker gene excision did not interfere with the expression of the gene of interest. Our data demonstrated the feasi of a developmentally controlled cre gene to mediate site-specific excision in tobacco very efficiently.
Publications

Klopotek, Y.; Haensch, K.-T.; Hause, B.; Hajirezaei, M.-R.; Druege, U.; Dark exposure of petunia cuttings strongly improves adventitious root formation and enhances carbohydrate availability during rooting in the light J. Plant Physiol. 167, 547-554, (2010) DOI: 10.1016/j.jplph.2009.11.008

The effect of temporary dark exposure on adventitious root formation (ARF) in Petunia×hybrida ‘Mitchell’ cuttings was investigated. Histological and metabolic changes in the cuttings during the dark treatment and subsequent rooting in the light were recorded. Excised cuttings were exposed to the dark for seven days at 10°C followed by a nine-day rooting period in perlite or were rooted immediately for 16 days in a climate chamber at 22/20°C (day/night) and a photosynthetic photon flux density (PPFD) of 100 μmol m−2 s−1. Dark exposure prior to rooting increased, accelerated and synchronized ARF. The rooting period was reduced from 16 days (non-treated cuttings) to 9 days (treated cuttings). Under optimum conditions, despite the reduced rooting period, dark-exposed cuttings produced a higher number and length of roots than non-treated cuttings. An increase in temperature to 20 °C during the dark treatment or extending the cold dark exposure to 14 days caused a similar enhancement of root development compared to non-treated cuttings. Root meristem formation had already started during the dark treatment and was enhanced during the subsequent rooting period. Levels of soluble sugars (glucose, fructose and sucrose) and starch in leaf and basal stem tissues significantly decreased during the seven days of dark exposure. This depletion was, however, compensated during rooting after 6 and 24h for soluble sugars in leaves and the basal stem, respectively, whereas the sucrose level in the basal stem was already increased at 6 h. The association of higher carbohydrate levels with improved rooting in previously dark-exposed versus non-treated cuttings indicates that increased post-darkness carbohydrate availability and allocation towards the stem base contribute to ARF under the influence of dark treatment and provide energy for cell growth subject to a rising sink intensity in the base of the cutting.
Publications

Handrick, V.; Vogt, T.; Frolov, A.; Profiling of hydroxycinnamic acid amides in Arabidopsis thaliana pollen by tandem mass spectrometry Anal. Bioanal. Chem. 398, 2789-2801, (2010) DOI: 10.1007/s00216-010-4129-2

Phenylpropanoid polyamine conjugates are widespread in plant species. Their presence has been established in seeds, flower buds, and pollen grains. A biosynthetic pathway proposed for hydroxycinnamoyl spermidine conjugates has been suggested for the model plant Arabidopsis thaliana with a central acyl transfer reaction performed by a BAHD-like hydroxycinnamoyl transferase. A detailed liquid chromatography (LC)–electrospray ionization–mass spectrometry- and tandem-mass-spectrometry (MS/MS)-based survey of wild-type and spermidine hydroxycinnamoyl transferase (SHT) mutants identified more than 30 different bis- and tris-substituted spermidine conjugates, five of which were glycosylated, in the methanol-soluble fraction of the pollen exine. On the basis of characterized fragmentation patterns, a high-throughput LC–MS/MS method for highly sensitive HCAA relative quantification (targeted profiling) was developed. Only minor qualitative and quantitative differences in the pattern of bis-acyl spermidine conjugates in the SHT mutant compared to wild-type plants provide strong evidence for the presence of multiple BAHD-like acyl transferases and suggest a much more complex array of enzymatic steps in the biosynthesis of these conjugates than previously anticipated.
Publications

Frolov, A.; Hoffmann, R.; Identification and relative quantification of specific glycation sites in human serum albumin Anal. Bioanal. Chem. 397, 2349-2356, (2010) DOI: 10.1007/s00216-010-3810-9

Glycation (or non-enzymatic glycosylation) is a common non-enzymatic covalent modification of human proteins. Glucose, the highest concentrated monosaccharide in blood, can reversibly react with amino groups of proteins to form Schiff bases that can rearrange to form relatively stable Amadori products. These can be further oxidized to advanced glycation end products (AGEs). Here, we analyzed the glycation patterns of human serum albumin (HSA) in plasma samples obtained from five patients with type 2 diabetes mellitus. Therefore, glycated peptides from a tryptic digest of plasma were enriched with m-aminophenylboronic acid (mAPBA) affinity chromatography. The glycated peptides were then further separated in the second dimension by RP-HPLC coupled on-line to an electrospray ionization (ESI) tandem mass spectrometer (MS/MS). Altogether, 18 Amadori peptides, encompassing 40% of the HSA sequence, were identified. The majority of the peptides were detected and relatively quantified in all five samples with a high reproducibility among the replicas. Eleven Lys-residues were glycated at similar quantities in all samples, with glycation site Lys549 (KAm(Glc)QTALVELVK) being the most abundant. In conclusion, the established mAPBA/nanoRP-HPLC-ESI-MS/MS approach could reproducibly identify and quantify glycation sites in plasma samples, potentially useful in diagnosis and therapeutic control.
Publications

Fedorova, M.; Frolov, A.; Hoffmann, R.; Fragmentation behavior of Amadori-peptides obtained by non-enzymatic glycosylation of lysine residues with ADP-ribose in tandem mass spectrometry J. Mass Spectrom. 45, 664-669, (2010) DOI: 10.1002/jms.1758

Mono‐ and poly‐adenosine diphosphate (ADP)‐ribosylation are common post‐translational modifications incorporated by sequence‐specific enzymes at, predominantly, arginine, asparagine, glutamic acid or aspartic acid residues, whereas non‐enzymatic ADP‐ribosylation (glycation) modifies lysine and cysteine residues. These glycated proteins and peptides (Amadori‐compounds) are commonly found in organisms, but have so far not been investigated to any great degree. In this study, we have analyzed their fragmentation characteristics using different mass spectrometry (MS) techniques. In matrix‐assisted laser desorption/ionization (MALDI)‐MS, the ADP‐ribosyl group was cleaved, almost completely, at the pyrophosphate bond by in‐source decay. In contrast, this cleavage was very weak in electrospray ionization (ESI)‐MS. The same fragmentation site also dominated the MALDI‐PSD (post‐source decay) and ESI‐CID (collision‐induced dissociation) mass spectra. The remaining phospho‐ribosyl group (formed by the loss of adenosine monophosphate) was stable, providing a direct and reliable identification of the modification site via the b‐ and y‐ion series. Cleavage of the ADP‐ribose pyrophosphate bond under CID conditions gives access to both neutral loss (347.10 u) and precursor‐ion scans (m/z 348.08), and thereby permits the identification of ADP‐ribosylated peptides in complex mixtures with high sensitivity and specificity. With electron transfer dissociation (ETD), the ADP‐ribosyl group was stable, providing ADP‐ribosylated c‐ and z‐ions, and thus allowing reliable sequence analyses.
IPB Mainnav Search