jump to searchjump to navigationjump to content

Publications - Cell and Metabolic Biology

Sort by: Year Type of publication

Displaying results 1 to 4 of 4.

Publications

Lukačin, R.; Matern, U.; Hehmann, M.; Specker, S.; Vogt, T.; Corrigendum to “Cations modulate the substrate specificity of bifunctional class I O-methyltransferase from Ammi majus” [FEBS Lett. 577 (2004) 367-370] FEBS Lett. 583, 855-855, (2009) DOI: 10.1016/j.febslet.2009.01.050

0
Publications

Rohde, B.; Hans, J.; Martens, S.; Baumert, A.; Hunziker, P.; Matern, U.; Anthranilate N-methyltransferase, a branch-point enzyme of acridone biosynthesis Plant J. 53, 541-553, (2008) DOI: 10.1111/j.1365-313X.2007.03360.x

Acridone alkaloids formed by acridone synthase in Ruta graveolens L. are composed of N ‐methylanthraniloyl CoA and malonyl CoAs. A 1095 bp cDNA from elicited Ruta cells was expressed in Escherichia coli , and shown to encode S‐ adenosyl‐l ‐methionine‐dependent anthranilate N ‐methyltransferase. SDS–PAGE of the purified enzyme revealed a mass of 40 ± 2 kDa, corresponding to 40 059 Da for the translated polypeptide, whereas the catalytic activity was assigned to a homodimer. Alignments revealed closest relationships to catechol or caffeate O ‐methyltransferases at 56% and 55% identity (73% similarity), respectively, with little similarity (∼20%) to N ‐methyltransferases for purines, putrescine, glycine, or nicotinic acid substrates. Notably, a single Asn residue replacing Glu that is conserved in caffeate O ‐methyltransferases determines the catalytic efficiency. The recombinant enzyme showed narrow specificity for anthranilate, and did not methylate catechol, salicylate, caffeate, or 3‐ and 4‐aminobenzoate. Moreover, anthraniloyl CoA was not accepted. As Ruta graveolens acridone synthase also does not accept anthraniloyl CoA as a starter substrate, the anthranilate N ‐methylation prior to CoA activation is a key step in acridone alkaloid formation, channelling anthranilate from primary into secondary branch pathways, and holds promise for biotechnological applications. RT‐PCR amplifications and Western blotting revealed expression of the N ‐methyltransferase in all organs of Ruta plants, particularly in the flower and root, mainly associated with vascular tissues. This expression correlated with the pattern reported previously for expression of acridone synthase and acridone alkaloid accumulation.
Publications

Lukačin, R.; Matern, U.; Specker, S.; Vogt, T.; Cations modulate the substrate specificity of bifunctional class I O-methyltransferase from Ammi majus FEBS Lett. 577, 367-370, (2004) DOI: 10.1016/j.febslet.2004.10.032

Caffeoyl‐coenzyme A O‐methyltransferase cDNA was cloned from dark‐grown Ammi majus L. (Apiaceae) cells treated with a crude fungal elicitor and the open reading frame was expressed in Escherichia coli . The translated polypeptide of 27.1‐kDa shared significant identity to other members of this highly conserved class of proteins and was 98.8% identical to the corresponding O‐methyltransferase from parsley. For biochemical characterization, the recombinant enzyme could be purified to apparent homogeneity by metal‐affinity chromatography, although the recombinant enzyme did not contain any affinity tag. Based on sequence analysis and substrate specificity, the enzyme classifies as a cation‐dependent O‐methyltransferase with pronounced preference for caffeoyl coenzyme A, when assayed in the presence of Mg2+‐ions. Surprisingly, however, the substrate specificity changed dramatically, when Mg2+ was replaced by Mn2+ or Co2+ in the assays. This effect could point to yet unknown functions and substrate specificities in situ and suggests promiscuous roles for the lignin specific cluster of plant O‐methyltransferases.
Publications

Irmler, S.; Schröder, G.; St-Pierre, B.; Crouch, N. P.; Hotze, M.; Schmidt, J.; Strack, D.; Matern, U.; Schröder, J.; Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase Plant J. 24, 797-804, (2000) DOI: 10.1111/j.1365-313X.2000.00922.x

The molecular characterization of CYP72A1 from Catharanthus roseus (Madagascar periwinkle) was described nearly a decade ago, but the enzyme function remained unknown. We now show by in situ hybridization and immunohistochemistry that the expression in immature leaves is epidermis‐specific. It thus follows the pattern previously established for early enzymes in the pathway to indole alkaloids, suggesting that CYP72A1 may be involved in their biosynthesis. The early reactions in that pathway, i.e. from geraniol to strictosidine, contain several candidates for P450 activities. We investigated in this work two reactions, the conversion of 7‐deoxyloganin to loganin (deoxyloganin 7‐hydroxylase, DL7H) and the oxidative ring cleavage converting loganin into secologanin (secologanin synthase, SLS). The action of DL7H has not been demonstrated in vitro previously, and SLS has only recently been identified as P450 activity in one other plant. We show for the first time that both enzyme activities are present in microsomes from C . roseus cell cultures. We then tested whether CYP72A1 expressed in E. coli as a translational fusion with the C . roseus P450 reductase (P450Red) has one or both of these activities. The results show that CYP72A1 converts loganin into secologanin.
IPB Mainnav Search