jump to searchjump to navigationjump to content

Publications - Cell and Metabolic Biology

Sort by: Year Type of publication

Displaying results 1 to 10 of 12.

Publications

Ronzan, M.; Piacentini, D.; Fattorini, L.; Federica, D. R.; Caboni, E.; Eiche, E.; Ziegler, J.; Hause, B.; Riemann, M.; Betti, C.; Altamura, M. M.; Falasca, G.; Auxin-jasmonate crosstalk in Oryza sativa L. root system formation after cadmium and/or arsenic exposure Environ. Exp. Bot. 165, 59-69, (2019) DOI: 10.1016/j.envexpbot.2019.05.013

Soil pollutants may affect root growth through interactions among phytohormones like auxin and jasmonates. Rice is frequently grown in paddy fields contaminated by cadmium and arsenic, but the effects of these pollutants on jasmonates/auxin crosstalk during adventitious and lateral roots formation are widely unknown. Therefore, seedlings of Oryza sativa cv. Nihonmasari and of the jasmonate-biosynthetic mutant coleoptile photomorphogenesis2 were exposed to cadmium and/or arsenic, and/or jasmonic acid methyl ester, and then analysed through morphological, histochemical, biochemical and molecular approaches.In both genotypes, arsenic and cadmium accumulated in roots more than shoots. In the roots, arsenic levels were more than twice higher than cadmium levels, either when arsenic was applied alone, or combined with cadmium. Pollutants reduced lateral root density in the wild -type in every treatment condition, but jasmonic acid methyl ester increased it when combined with each pollutant. Interestingly, exposure to cadmium and/or arsenic did not change lateral root density in the mutant. The transcript levels of OsASA2 and OsYUCCA2, auxin biosynthetic genes, increased in the wild-type and mutant roots when pollutants and jasmonic acid methyl ester were applied alone. Auxin (indole-3-acetic acid) levels transiently increased in the roots with cadmium and/or arsenic in the wild-type more than in the mutant. Arsenic and cadmium, when applied alone, induced fluctuations in bioactive jasmonate contents in wild-type roots, but not in the mutant. Auxin distribution was evaluated in roots of OsDR5::GUS seedlings exposed or not to jasmonic acid methyl ester added or not with cadmium and/or arsenic. The DR5::GUS signal in lateral roots was reduced by arsenic, cadmium, and jasmonic acid methyl ester. Lipid peroxidation, evaluated as malondialdehyde levels, was higher in the mutant than in the wild-type, and increased particularly in As presence, in both genotypes.Altogether, the results show that an auxin/jasmonate interaction affects rice root system development in the presence of cadmium and/or arsenic, even if exogenous jasmonic acid methyl ester only slightly mitigates pollutants toxicity.
Books and chapters

Tissier, A.; Ziegler, J.; Vogt, T.; Specialized Plant Metabolites: Diversity and Biosynthesis (Krauss, G.-J. & Nies, D. H., eds.). 14-37, (2015) ISBN: 9783527686063 DOI: 10.1002/9783527686063.ch2

Plant secondary metabolites, also termed specialized plant metabolites, currently comprise more than 200 000 natural products that are all based on a few biosynthetic pathways and key primary metabolites. Some pathways like flavonoid and terpenoid biosynthesis are universally distributed in the plant kingdom, whereas others like alkaloid or cyanogenic glycoside biosynthesis are restricted to a limited set of taxa. Diversification is achieved by an array of mechanisms at the genetic and enzymatic level including gene duplications, substrate promiscuity of enzymes, cell‐specific regulatory systems, together with modularity and combinatorial aspects. Specialized metabolites reflect adaptations to a specific environment. The observed diversity illustrates the heterogeneity and multitude of ecological habitats and niches that plants have colonized so far and constitutes a reservoir of potential new metabolites that may provide adaptive advantage in the face of environmental changes. The code that connects the observed chemical diversity to this ecological diversity is largely unknown. One way to apprehend this diversity is to realize its tremendous plasticity and evolutionary potential. This chapter presents an overview of the most widespread and popular secondary metabolites, which provide a definite advantage to adapt to or to colonize a particular environment, making the boundary between the “primary” and the “secondary” old fashioned and blurry.
Publications

Fellenberg, C.; Ziegler, J.; Handrick, V.; Vogt, T.; Polyamine homeostasis in wild type and phenolamide deficient Arabidopsis thaliana stamens Front. Plant Sci. 3, 180, (2012) DOI: 10.3389/fpls.2012.00180

Polyamines (PAs) like putrescine, spermidine, and spermine are ubiquitous polycationic molecules that occur in all living cells and have a role in a wide variety of biological processes. High amounts of spermidine conjugated to hydroxycinnamic acids are detected in the tryphine of Arabidopsis thaliana pollen grains. Tapetum localized spermidine hydroxycinnamic acid transferase (SHT) is essential for the biosynthesis of these anther specific tris-conjugated spermidine derivatives. Sht knockout lines show a strong reduction of hydroxycinnamic acid amides (HCAAs). The effect of HCAA-deficient anthers on the level of free PAs was measured by a new sensitive and reproducible method using 9-fluorenylmethyl chloroformate (FMOC) and fluorescence detection by HPLC. PA concentrations can be accurately determined even when very limited amounts of plant material, as in the case of A. thaliana stamens, are available. Analysis of free PAs in wild type stamens compared to sht deficient mutants and transcript levels of key PA biosynthetic genes revealed a highly controlled regulation of PA homeostasis in A. thaliana anthers.
Publications

Geissler, R.; Brandt, W.; Ziegler, J.; Molecular Modeling and Site-Directed Mutagenesis Reveal the Benzylisoquinoline Binding Site of the Short-Chain Dehydrogenase/Reductase Salutaridine Reductase Plant Physiol. 143, 1493-1503, (2007) DOI: 10.1104/pp.106.095166

Recently, the NADPH-dependent short-chain dehydrogenase/reductase (SDR) salutaridine reductase (E.C. 1.1.1.248) implicated in morphine biosynthesis was cloned from Papaver somniferum. In this report, a homology model of the Papaver bracteatum homolog was created based on the x-ray structure of human carbonyl reductase 1. The model shows the typical α/β-folding pattern of SDRs, including the four additional helices αF′-1 to αF′-4 assumed to prevent the dimerization of the monomeric short-chain dehyrogenases/reductases. Site-directed mutagenesis of asparagine-152, serine-180, tyrosine-236, and lysine-240 resulted in enzyme variants with strongly reduced performance or inactive enzymes, showing the involvement of these residues in the proton transfer system for the reduction of salutaridine. The strong preference for NADPH over NADH could be abolished by replacement of arginine residues 44 and 48 by glutamic acid, confirming the interaction between the arginines and the 2′-phosphate group. Docking of salutaridine into the active site revealed nine amino acids presumably responsible for the high substrate specificity of salutaridine reductase. Some of these residues are arranged in the right position by an additional αE′ helix, which is not present in SDRs analyzed so far. Enzyme kinetic data from mutagenic replacement emphasize the critical role of these residues in salutaridine binding and provide the first data on the molecular interaction of benzylisoquinoline alkaloids with enzymes.
Publications

Ziegler, J.; Voigtländer, S.; Schmidt, J.; Kramell, R.; Miersch, O.; Ammer, C.; Gesell, A.; Kutchan, T. M.; Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis Plant J. 48, 177-192, (2006) DOI: 10.1111/j.1365-313X.2006.02860.x

Plants of the order Ranunculales, especially members of the species Papaver , accumulate a large variety of benzylisoquinoline alkaloids with about 2500 structures, but only the opium poppy (Papaver somniferum ) and Papaver setigerum are able to produce the analgesic and narcotic morphine and the antitussive codeine. In this study, we investigated the molecular basis for this exceptional biosynthetic capability by comparison of alkaloid profiles with gene expression profiles between 16 different Papaver species. Out of 2000 expressed sequence tags obtained from P. somniferum , 69 show increased expression in morphinan alkaloid‐containing species. One of these cDNAs, exhibiting an expression pattern very similar to previously isolated cDNAs coding for enzymes in benzylisoquinoline biosynthesis, showed the highest amino acid identity to reductases in menthol biosynthesis. After overexpression, the protein encoded by this cDNA reduced the keto group of salutaridine yielding salutaridinol, an intermediate in morphine biosynthesis. The stereoisomer 7‐epi ‐salutaridinol was not formed. Based on its similarities to a previously purified protein from P. somniferum with respect to the high substrate specificity, molecular mass and kinetic data, the recombinant protein was identified as salutaridine reductase (SalR; EC 1.1.1.248). Unlike codeinone reductase, an enzyme acting later in the pathway that catalyses the reduction of a keto group and which belongs to the family of the aldo‐keto reductases, the cDNA identified in this study as SalR belongs to the family of short chain dehydrogenases/reductases and is related to reductases in monoterpene metabolism.
Publications

Ziegler, J.; Diaz-Chávez, M. L.; Kramell, R.; Ammer, C.; Kutchan, T. M.; Comparative macroarray analysis of morphine containing Papaver somniferum and eight morphine free Papaver species identifies an O-methyltransferase involved in benzylisoquinoline biosynthesis Planta 222, 458-471, (2005) DOI: 10.1007/s00425-005-1550-4

Benzylisoquinoline alkaloids constitute a group of about 2,500 structures and are mainly produced by plants of the order Ranunculales. But only the opium poppy, Papaver somniferum, and Papaver setigerum are able to produce morphine. In this study, we started to investigate by gene expression analysis the molecular basis for this exceptional biosynthetic ability. A sequencing project from P. somniferum seedlings was initiated using a method based on the amplified fragment length polymorphism technique that resulted in 849 UniGenes. These cDNAs were analysed on macroarrays for differential expression between morphine-containing P. somniferum plants and eight other Papaver species, which accumulate other benzylisoquinolines instead of morphine. Three cDNAs showing increased expression in P. somniferum compared to all the other Papaver species were identified. Whereas two showed no significant homology to any known protein, one putatively encoded an O-methyltransferase. Analysis of substrate specificity of the heterologously expressed protein and mass spectrometric identification of the enzymatic products identified this protein as S-adenosyl-L-methionine:(R,S)-3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase (EC 2.1.1.116). Unlike other O-methyltransferases of different positional specificities implicated in benzylisoquinoline metabolism, the enzyme only accepted tetrahydroxylated tetrahydrobenzylisoquinolines as substrates; methylation was tolerated only at the 6-hydroxy position.
Publications

Stenzel, I.; Hause, B.; Miersch, O.; Kurz, T.; Maucher, H.; Weichert, H.; Ziegler, J.; Feussner, I.; Wasternack, C.; Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana Plant Mol. Biol. 51, 895-911, (2003) DOI: 10.1023/A:1023049319723

In biosynthesis of octadecanoids and jasmonate (JA), the naturally occurring enantiomer is established in a step catalysed by the gene cloned recently from tomato as a single-copy gene (Ziegler et al., 2000). Based on sequence homology, four full-length cDNAs were isolated from Arabidopsis thaliana ecotype Columbia coding for proteins with AOC activity. The expression of AOCgenes was transiently and differentially up-regulated upon wounding both locally and systemically and was induced by JA treatment. In contrast, AOC protein appeared at constitutively high basal levels and was slightly increased by the treatments. Immunohistochemical analyses revealed abundant occurrence of AOC protein as well as of the preceding enzymes in octadecanoid biosynthesis, lipoxygenase (LOX) and allene oxide synthase (AOS), in fully developed tissues, but much less so in 7-day old leaf tissues. Metabolic profiling data of free and esterified polyunsaturated fatty acids and lipid peroxidation products including JA and octadecanoids in wild-type leaves and the jasmonate-deficient mutant OPDA reductase 3 (opr3) revealed preferential activity of the AOS branch within the LOX pathway. 13-LOX products occurred predominantly as esterified derivatives, and all 13-hydroperoxy derivatives were below the detection limits. There was a constitutive high level of free 12-oxo-phytodienoic acid (OPDA) in untreated wild-type and opr3 leaves, but an undetectable expression of AOC. Upon wounding opr3 leaves exhibited only low expression of AOC, wounded wild-type leaves, however, accumulated JA and AOC mRNA. These and further data suggest regulation of JA biosynthesis by OPDA compartmentalization and a positive feedback by JA during leaf development.
Publications

Stenzel, I.; Hause, B.; Maucher, H.; Pitzschke, A.; Miersch, O.; Ziegler, J.; Ryan, C. A.; Wasternack, C.; Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato - amplification in wound signalling Plant J. 33, 577-589, (2003) DOI: 10.1046/j.1365-313X.2003.01647.x

The allene oxide cyclase (AOC)‐catalyzed step in jasmonate (JA) biosynthesis is important in the wound response of tomato. As shown by treatments with systemin and its inactive analog, and by analysis of 35S::prosysteminsense and 35S::prosysteminantisense plants, the AOC seems to be activated by systemin (and JA) leading to elevated formation of JA. Data are presented on the local wound response following activation of AOC and generation of JA, both in vascular bundles. The tissue‐specific occurrence of AOC protein and generation of JA is kept upon wounding or other stresses, but is compromised in 35S::AOCsense plants, whereas 35S::AOCantisense plants exhibited residual AOC expression, a less than 10% rise in JA, and no detectable expression of wound response genes. The (i) activation of systemin‐dependent AOC and JA biosynthesis occurring only upon substrate generation, (ii) the tissue‐specific occurrence of AOC in vascular bundles, where the prosystemin gene is expressed, and (iii) the tissue‐specific generation of JA suggest an amplification in the wound response of tomato leaves allowing local and rapid defense responses.
Publications

Ziegler, J.; Stenzel, I.; Hause, B.; Maucher, H.; Hamberg, M.; Grimm, R.; Ganal, M.; Wasternack, C.; Molecular Cloning of Allene Oxide Cyclase J. Biol. Chem. 275, 19132-19138, (2000) DOI: 10.1074/jbc.M002133200

Allene oxide cyclase (EC 5.3.99.6) catalyzes the stereospecific cyclization of an unstable allene oxide to (9S,13S)-12-oxo-(10,15Z)-phytodienoic acid, the ultimate precursor of jasmonic acid. This dimeric enzyme has previously been purified, and two almost identical N-terminal peptides were found, suggesting allene oxide cyclase to be a homodimeric protein. Furthermore, the native protein was N-terminally processed. Using degenerate primers, a polymerase chain reaction fragment could be generated from tomato, which was further used to isolate a full-length cDNA clone of 1 kilobase pair coding for a protein of 245 amino acids with a molecular mass of 26 kDa. Whereas expression of the whole coding region failed to detect allene oxide cyclase activity, a 5′-truncated protein showed high activity, suggesting that additional amino acids impair the enzymatic function. Steric analysis of the 12-oxophytodienoic acid formed by the recombinant enzyme revealed exclusive (>99%) formation of the 9S,13Senantiomer. Exclusive formation of this enantiomer was also found in wounded tomato leaves. Southern analysis and genetic mapping revealed the existence of a single gene for allene oxide cyclase located on chromosome 2 of tomato. Inspection of the N terminus revealed the presence of a chloroplastic transit peptide, and the location of allene oxide cyclase protein in that compartment could be shown by immunohistochemical methods. Concomitant with the jasmonate levels, the accumulation of allene oxide cyclase mRNA was transiently induced after wounding of tomato leaves.
Publications

Maucher, H.; Hause, B.; Feussner, I.; Ziegler, J.; Wasternack, C.; Allene oxide synthases of barley (Hordeum vulgare cv. Salome): tissue specific regulation in seedling development Plant J. 21, 199-213, (2000) DOI: 10.1046/j.1365-313x.2000.00669.x

Allene oxide synthase (AOS) is the first enzyme in the lipoxygenase (LOX) pathway which leads to formation of jasmonic acid (JA). Two full‐length cDNAs of AOS designated as AOS1 and AOS2, respectively, were isolated from barley (H. vulgare cv. Salome) leaves, which represent the first AOS clones from a monocotyledonous species. For AOS1, the open reading frame encompasses 1461 bp encoding a polypeptide of 487 amino acids with calculated molecular mass of 53.4 kDa and an isoelectric point of 9.3, whereas the corresponding data of AOS2 are 1443 bp, 480 amino acids, 52.7 kDa and 7.9. Southern blot analysis revealed at least two genes. Despite the lack of a putative chloroplast signal peptide in both sequences, the protein co‐purified with chloroplasts and was localized within chloroplasts by immunocytochemical analysis. The barley AOSs, expressed in bacteria as active enzymes, catalyze the dehydration of LOX‐derived 9‐ as well as 13‐hydroperoxides of polyenoic fatty acids to the unstable allene oxides. In leaves, AOS mRNA accumulated upon treatment with jasmonates, octadecanoids and metabolizable carbohydrates, but not upon floating on abscisic acid, NaCl, Na‐salicylate or infection with powdery mildew. In developing seedlings, AOS mRNA strongly accumulated in the scutellar nodule, but less in the leaf base. Both tissues exhibited elevated JA levels. In situ hybridizations revealed the preferential occurrence of AOS mRNA in parenchymatic cells surrounding the vascular bundles of the scutellar nodule and in the young convoluted leaves as well as within the first internode. The properties of both barley AOSs, their up‐regulation of their mRNAs and their tissue specific expression suggest a role during seedling development and jasmonate biosynthesis.
IPB Mainnav Search