jump to searchjump to navigationjump to content

Publications - Cell and Metabolic Biology

Sort by: Year Type of publication

Displaying results 1 to 5 of 5.

Publications

Nagel, R.; Bernholz, C.; Vranová, E.; Košuth, J.; Bergau, N.; Ludwig, S.; Wessjohann, L.; Gershenzon, J.; Tissier, A.; Schmidt, A.; Arabidopsis thaliana isoprenyl diphosphate synthases produce the C25 intermediate geranylfarnesyl diphosphate Plant J. 84, 847-859, (2015) DOI: 10.1111/tpj.13064

Isoprenyl diphosphate synthases (IDSs) catalyze some of the most basic steps in terpene biosynthesis by producing the prenyl diphosphate precursors of each of the various terpenoid classes. Most plants investigated have distinct enzymes that produce the short‐chain all‐trans (E) prenyl diphosphates geranyl diphosphate (GDP, C10), farnesyl diphosphate (FDP, C15) or geranylgeranyl diphosphate (GGDP, C20). In the genome of Arabidopsis thaliana, 15 trans‐product‐forming IDSs are present. Ten of these have recently been shown to produce GGDP by genetic complementation of a carotenoid pathway engineered into Escherichia coli. When verifying the product pattern of IDSs producing GGDP by a new LC‐MS/MS procedure, we found that five of these IDSs produce geranylfarnesyl diphosphate (GFDP, C25) instead of GGDP as their major product in enzyme assays performed in vitro. Over‐expression of one of the GFDP synthases in A. thaliana confirmed the production of GFDP in vivo. Enzyme assays with A. thaliana protein extracts from roots but not other organs showed formation of GFDP. Furthermore, GFDP itself was detected in root extracts. Subcellular localization studies in leaves indicated that four of the GFDP synthases were targeted to the plastoglobules of the chloroplast and one was targeted to the mitochondria. Sequence comparison and mutational studies showed that the size of the R group of the 5th amino acid residue N‐terminal to the first aspartate‐rich motif is responsible for C25 versus C20 product formation, with smaller R groups (Ala and Ser) resulting in GGDP (C20) as a product and a larger R group (Met) resulting in GFDP (C25).
Publications

Back, K.; Jang, S. M.; Lee, B.-C.; Schmidt, A.; Strack, D.; Kim, K.-M.; Cloning and Characterization of a Hydroxycinnamoyl-CoA:Tyramine N-(Hydroxycinnamoyl)Transferase Induced in Response to UV-C and Wounding from Capsicum annuum Plant Cell Physiol. 42, 475-481, (2001) DOI: 10.1093/pcp/pce060

Hydroxycinnamoyl-CoA : tyramine N-(hydroxycinnamoyl) transferase (THT) is a pivotal enzyme in the synthesis of N-(hydroxycinnamoyl)-amines, which are associated with cell wall fortification in plants. The cDNA encoding THT was cloned from the leaves of UV-C treated Capsicum annuum (hot pepper) using a differential screening strategy. The predicted protein encoded by the THT cDNA is 250 amino acids in length and has a relative molecular mass of 28,221. The protein sequence derived from the cDNA shares 76% and 67% identity with the potato and tobacco THT protein sequences, respectively. The recombinant pepper THT enzyme was purified using a bacterial overexpression system. The purified enzyme has a broad substrate specificity including acyl donors such as cinnamoyl-, sinapoyl-, feruloyl-, caffeoyl-, and 4-coumaroyl-CoA and acceptors such as tyramine and octopamine. In UV-C treated plants, the THT mRNA was strongly induced in leaves, and the elevated level of expression was stable for up to 36 h. THT mRNA also increased in leaves that were detached from the plant but not treated with UV-C. THT expression was measured in different plant tissues, and was constitutive at a similar level in leaf, root, stem, flower and fruit. Induction of THT mRNA was correlated with an increase in THT protein.
Publications

Schmidt, A.; Grimm, R.; Schmidt, J.; Scheel, D.; Strack, D.; Rosahl, S.; Cloning and Expression of a Potato cDNA Encoding Hydroxycinnamoyl-CoA:Tyramine N-(Hydroxycinnamoyl)transferase J. Biol. Chem. 274, 4273-4280, (1999) DOI: 10.1074/jbc.274.7.4273

Hydroxycinnamoyl-CoA:tyramineN-(hydroxycinnamoyl)transferase (THT; EC 2.3.1.110) catalyzes the transfer of hydroxycinnamic acids from the respective CoA esters to tyramine and other amines in the formation ofN-(hydroxycinnamoyl)amines. Expression of THT is induced byPhytophthora infestans, the causative agent of late blight disease in potato. The amino acid sequences of nine endopeptidase LysC-liberated peptides from purified potato THT were determined. Using degenerate primers, a THT-specific fragment was obtained by reverse transcription-polymerase chain reaction, and THT cDNA clones were isolated from a library constructed from RNA of elicitor-treated potato cells. The open reading frame encoding a protein of 248 amino acids was expressed in Escherichia coli. Recombinant THT exhibited a broad substrate specificity, similar to that of native potato THT, accepting cinnamoyl-, 4-coumaroyl-, caffeoyl-, feruloyl- and sinapoyl-CoA as acyl donors and tyramine, octopamine, and noradrenalin as acceptors tested. Elicitor-induced THT transcript accumulation in cultured potato cells peaked 5 h after initiation of treatment, whereas enzyme activity was highest from 5 to 30 h after elicitation. In soil-grown potato plants, THT mRNA was most abundant in roots. Genomic Southern analyses indicate that, in potato, THT is encoded by a multigene family.
Publications

Schröder, J.; Raiber, S.; Berger, T.; Schmidt, A.; Schmidt, J.; Soares-Sello, A. M.; Bardshiri, E.; Strack, D.; Simpson, T. J.; Veit, M.; Schröder, G.; Plant Polyketide Synthases: A Chalcone Synthase-Type Enzyme Which Performs a Condensation Reaction with Methylmalonyl-CoA in the Biosynthesis of C-Methylated Chalcones Biochemistry 37, 8417-8425, (1998) DOI: 10.1021/bi980204g

Heterologous screening of a cDNA library from Pinus strobus seedlings identified clones for two chalcone synthase (CHS) related proteins (PStrCHS1 and PStrCHS2, 87.6% identity). Heterologous expression in Escherichia coli showed that PStrCHS1 performed the typical CHS reaction, that it used starter CoA-esters from the phenylpropanoid pathway, and that it performed three condensation reactions with malonyl-CoA, followed by the ring closure to the chalcone. PstrCHS2 was completely inactive with these starters and also with linear CoA-esters. Activity was detected only with a diketide derivative (N-acetylcysteamine thioester of 3-oxo-5-phenylpent-4-enoic acid) that corresponded to the CHS reaction intermediate postulated after the first condensation reaction. PstrCHS2 performed only one condensation, with 6-styryl-4-hydroxy-2-pyrone derivatives as release products. The enzyme preferred methylmalonyl-CoA against malonyl-CoA, if only methylmalonyl-CoA was available. These properties and a comparison with the CHS from Pinussylvestris suggested for PstrCHS2 a special function in the biosynthesis of secondary products. In contrast to P. sylvestris, P. strobus contains C-methylated chalcone derivatives, and the methyl group is at the position predicted from a chain extension with methylmalonyl-CoA in the second condensation of the biosynthetic reaction sequence. We propose that PstrCHS2 specifically contributes the condensing reaction with methylmalonyl-CoA to yield a methylated triketide intermediate. We discuss a model that the biosynthesis of C-methylated chalcones represents the simplest example of a modular polyketide synthase.
Publications

Schmidt, A.; Scheel, D.; Strack, D.; Elicitor-stimulated biosynthesis of hydroxycinnamoyltyramines in cell suspension cultures of Solanum tuberosum Planta 205, 51-55, (1998) DOI: 10.1007/s004250050295

Treatment of suspension-cultured potato cells (Solanum tuberosum L. cv. Desirée) with an elicitor from Phytophthora infestans induced increased incorporation of 4-hydroxybenzaldehyde, 4-hydroxybenzoate, and N-4-coumaroyl- and N-feruloyltyramine into the cell␣wall and secretion of N-4-coumaroyl- and N-feruloyltyramine into the culture medium. Induced metabolite accumulation was preceded by rapid and transient increases in activities of phenylalanine ammonia-lyase (EC 4.3.1.5) and tyrosine decarboxylase (TyrDC; EC 4.1.1.25), exhibiting maximal activities 5–10 h after initiation of elicitor treatment. Activities of hydroxycinnamoyl-CoA:tyramine hydroxycinnamoyltransferase (EC 2.3.1.110), catalyzing the formation of N-4-coumaroyl- and N-feruloyltyramine, increased later and remained at high levels. The phenolic defense compounds appear to be involved in cell wall reinforcement and may further directly affect fungal growth in the apoplastic space.
IPB Mainnav Search