jump to searchjump to navigationjump to content

Publications - Cell and Metabolic Biology

Sort by: Year Type of publication

Displaying results 1 to 7 of 7.

Publications

Zabel, S.; Brandt, W.; Porzel, A.; Athmer, B.; Bennewitz, S.; Schäfer, P.; Kortbeek, R. W. J.; Bleeker, P. M.; Tissier, A.; A single cytochrome P450 oxidase from Solanum habrochaites sequentially oxidizes 7-epi-zingiberene to derivatives toxic to whiteflies and various microorganisms Plant J. 105, 1309-1325, (2021) DOI: 10.1111/tpj.15113

Secretions from glandular trichomes potentially protect plants against a variety of aggressors. In the tomato clade of the Solanum genus, glandular trichomes of wild species produce a rich source of chemical diversity at the leaf surface. Previously, 7-epi-zingiberene produced in several accessions of Solanum habrochaites was found to confer resistance to whiteflies (Bemisia tabaci) and other insect pests. Here, we report the identification and characterisation of 9-hydroxy-zingiberene (9HZ) and 9-hydroxy-10,11-epoxyzingiberene (9H10epoZ), two derivatives of 7-epi-zingiberene produced in glandular trichomes of S. habrochaites LA2167. Using a combination of transcriptomics and genetics, we identified a gene coding for a cytochrome P450 oxygenase, ShCYP71D184, that is highly expressed in trichomes and co-segregates with the presence of the zingiberene derivatives. Transient expression assays in Nicotiana benthamiana showed that ShCYP71D184 carries out two successive oxidations to generate 9HZ and 9H10epoZ. Bioactivity assays showed that 9-hydroxy-10,11-epoxyzingiberene in particular exhibits substantial toxicity against B. tabaci and various microorganisms including Phytophthora infestans and Botrytis cinerea. Our work shows that trichome secretions from wild tomato species can provide protection against a wide variety of organisms. In addition, the availability of the genes encoding the enzymes for the pathway of 7-epi-zingiberene derivatives makes it possible to introduce this trait in cultivated tomato by precision breeding.
Publications

Bennewitz, S.; Bergau, N.; Tissier, A.; QTL Mapping of the Shape of Type VI Glandular Trichomes in Tomato Front. Plant Sci. 9, 1421, (2018) DOI: 10.3389/fpls.2018.01421

Glandular trichomes contribute to the high resistance of wild tomato species against insect pests not only thanks to the metabolites they produce but also because of morphological and developmental features which support the high production of these defense compounds. In Solanum habrochaites, type VI trichomes have a distinct spherical shape and a large intercellular storage cavity where metabolites can accumulate and are released upon breaking off of the glandular cells. In contrast, the type VI trichomes of S. lycopersicum have a four-leaf clover shape corresponding to the four glandular cells and a small internal cavity with limited capacity for storage of compounds. To better characterize the genetic factors underlying these trichome morphological differences we created a back-cross population of 116 individuals between S. habrochaites LA1777 and S. lycopersicum var. cerasiforme WVa106. A trichome score that reflects the shape of the type VI trichomes allowing the quantification of this trait was designed. The scores were distributed normally across the population, which was mapped with a total of 192 markers. This resulted in the identification of six quantitative trait locus (QTLs) on chromosomes I, VII, VII, and XI. The QTL on chromosome I with the highest LOD score was confirmed and narrowed down to a 500 gene interval in an advanced population derived from one of the back-cross lines. Our results provide the foundation for the genetic dissection of type VI trichome morphology and the introgression of these trichome traits into cultivated tomato lines for increased insect resistance.
Publications

Xu, H.; Lybrand, D.; Bennewitz, S.; Tissier, A.; Last, R. L.; Pichersky, E.; Production of trans-chrysanthemic acid, the monoterpene acid moiety of natural pyrethrin insecticides, in tomato fruit Metab. Eng. 47, 271-278, (2018) DOI: 10.1016/j.ymben.2018.04.004

The pyrethrum plant, Tanacetum cinerariifolium (Asteraceae) synthesizes a class of compounds called pyrethrins that have strong insecticidal properties but are safe to humans. Class I pyrethrins are esters of the monoterpenoid trans-chrysanthemic acid with one of three jasmonic-acid derived alcohols. We reconstructed the trans-chrysanthemic acid biosynthetic pathway in tomato fruits, which naturally produce high levels of the tetraterpene pigment lycopene, an isoprenoid which shares a common precursor, dimethylallyl diphosphate (DMAPP), with trans-chrysanthemic acid. trans-Chrysanthemic acid biosynthesis in tomato fruit was achieved by expressing the chrysanthemyl diphosphate synthase gene from T. cinerariifolium, encoding the enzyme that uses DMAPP to make trans-chrysanthemol, under the control of the fruit specific promoter PG, as well as an alcohol dehydrogenease (ADH) gene and aldehyde dehydrogenase (ALDH) gene from a wild tomato species, also under the control of the PG promoter. Tomato fruits expressing all three genes had a concentration of trans-chrysanthemic acid that was about 1.7-fold higher (by weight) than the levels of lycopene present in non-transgenic fruit, while the level of lycopene in the transgenic plants was reduced by 68%. Ninety seven percent of the diverted DMAPP was converted to trans-chrysanthemic acid, but 62% of this acid was further glycosylated. We conclude that the tomato fruit is an alternative platform for the biosynthesis of trans-chrysanthemic acid by metabolic engineering.
Publications

Balcke, G. U.; Bennewitz, S.; Bergau, N.; Athmer, B.; Henning, A.; Majovsky, P.; Jiménez-Gómez, J. M.; Hoehenwarter, W.; Tissier, A.; Multi-Omics of Tomato Glandular Trichomes Reveals Distinct Features of Central Carbon Metabolism Supporting High Productivity of Specialized Metabolites Plant Cell 29, 960-983, (2017) DOI: 10.1105/tpc.17.00060

Glandular trichomes are metabolic cell factories with the capacity to produce large quantities of secondary metabolites. Little is known about the connection between central carbon metabolism and metabolic productivity for secondary metabolites in glandular trichomes. To address this gap in our knowledge, we performed comparative metabolomics, transcriptomics, proteomics, and 13C-labeling of type VI glandular trichomes and leaves from a cultivated (Solanum lycopersicum LA4024) and a wild (Solanum habrochaites LA1777) tomato accession. Specific features of glandular trichomes that drive the formation of secondary metabolites could be identified. Tomato type VI trichomes are photosynthetic but acquire their carbon essentially from leaf sucrose. The energy and reducing power from photosynthesis are used to support the biosynthesis of secondary metabolites, while the comparatively reduced Calvin-Benson-Bassham cycle activity may be involved in recycling metabolic CO2. Glandular trichomes cope with oxidative stress by producing high levels of polyunsaturated fatty acids, oxylipins, and glutathione. Finally, distinct mechanisms are present in glandular trichomes to increase the supply of precursors for the isoprenoid pathways. Particularly, the citrate-malate shuttle supplies cytosolic acetyl-CoA and plastidic glycolysis and malic enzyme support the formation of plastidic pyruvate. A model is proposed on how glandular trichomes achieve high metabolic productivity.
Publications

Taylor, I.; Wang, Y.; Seitz, K.; Baer, J.; Bennewitz, S.; Mooney, B. P.; Walker, J. C.; Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission PLOS ONE 11, e0147203, (2016) DOI: 10.1371/journal.pone.0147203

Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity.
Publications

Bergau, N.; Bennewitz, S.; Syrowatka, F.; Hause, G.; Tissier, A.; The development of type VI glandular trichomes in the cultivated tomato Solanum lycopersicum and a related wild species S. habrochaites BMC Plant Biol. 15, 289, (2015) DOI: 10.1186/s12870-015-0678-z

BackgroundType VI glandular trichomes represent the most abundant trichome type on leaves and stems of tomato plants and significantly contribute to herbivore resistance, particularly in the wild species. Despite this, their development has been poorly studied so far. The goal of this study is to fill this gap. Using a variety of cell imaging techniques, a detailed record of the anatomy and developmental stages of type VI trichomes in the cultivated tomato (Solanum lycopersicum) and in a related wild species (S. habrochaites) is provided.ResultsIn both species, the development of these structures follows a highly reproducible cell division pattern. The two species differ in the shape of the trichome head which is round in S. habrochaites and like a four-leaf clover in S. lycopersicum, correlating with the presence of a large intercellular cavity in S. habrochaites where the produced metabolites accumulate. In both species, the junction between the intermediate cell and the four glandular cells constitute a breaking point facilitating the decapitation of the trichome and thereby the quick release of the metabolites. A strongly auto-fluorescent compound transiently accumulates in the early stages of development suggesting a potential role in the differentiation process. Finally, immuno-labelling with antibodies recognizing specific cell wall components indicate a key role of pectin and arabinogalactan components in the differentiation of type VI trichomes.ConclusionsOur observations explain the adaptive morphologies of type VI trichomes for metabolite storage and release and provide a framework for further studies of these important metabolic cellular factories. This is required to better exploit their potential, in particular for the breeding of pest resistance in tomato.
Books and chapters

Balcke, G. U.; Bennewitz, S.; Zabel, S.; Tissier, A.; Isoprenoid and Metabolite Profiling of Plant Trichomes (Rodríguez-Concepción, M., ed.). Methods Mol. Biol. 1153, 189-202, (2014) ISBN: 978-1-4939-0606-2 DOI: 10.1007/978-1-4939-0606-2_13

Plant glandular trichomes are specialized secretory structures located on the surface of the aerial parts of plants with large biosynthetic capacity, often with terpenoids as output molecules. The collection of plant trichomes requires a method to separate trichomes from leaf epidermal tissues. For metabolite profiling, trichome tissue needs to be rapidly quenched in order to maintain the indigenous state of intracellular intermediates. Appropriate extraction and chromatographic separation methods must be available, which address the wide-ranging polarity of metabolites. In this chapter, a protocol for trichome harvest using a frozen paint brush is presented. A work flow for broad-range metabolite profiling using LC-MS2 analysis is described, which is applicable to assess very hydrophilic isoprenoid precursors as well as more hydrophobic metabolites from trichomes and other plant tissues.
IPB Mainnav Search