jump to searchjump to navigationjump to content

Publications - Cell and Metabolic Biology

Displaying results 1 to 2 of 2.

Publications

Kowarschik, K., Hoehenwarter, W., Marillonnet, S. & Trujillo, M. UbiGate: a synthetic biology toolbox to analyse ubiquitination. New Phytol. 217, 1749-1763, (2018) DOI: 10.1111/nph.14900

   Ubiquitination is mediated by an enzymatic cascade that results in the modification of substrate proteins, redefining their fate. This post-translational modification is involved in most cellular processes, yet its analysis faces manifold obstacles due to its complex and ubiquitous nature. Reconstitution of the ubiquitination cascade in bacterial systems circumvents several of these problems and was shown to faithfully recapitulate the process.
    Here, we present UbiGate − a synthetic biology toolbox, together with an inducible bacterial expression system – to enable the straightforward reconstitution of the ubiquitination cascades of different organisms in Escherichia coli by ‘Golden Gate’ cloning.
    This inclusive toolbox uses a hierarchical modular cloning system to assemble complex DNA molecules encoding the multiple genetic elements of the ubiquitination cascade in a predefined order, to generate polycistronic operons for expression.
    We demonstrate the efficiency of UbiGate in generating a variety of expression elements to reconstitute autoubiquitination by different E3 ligases and the modification of their substrates, as well as its usefulness for dissecting the process in a time- and cost-effective manner.
Publications

Balcke, G. U., Bennewitz, S., Bergau, N., Athmer, B., Henning, A., Majovsky, P., Jiménez-Gómez, J. M., Hoehenwarter, W. & Tissier, A. Multi-Omics of tomato glandular trichomes reveals distinct features of central carbon metabolism supporting high productivity of specialized metabolites Plant Cell 29, 960-983, (2017) DOI: 10.1105/tpc.17.00060

Glandular trichomes are metabolic cell factories with the capacity to produce large quantities of secondary metabolites. Little is known about the connection between central carbon metabolism and metabolic productivity for secondary metabolites in glandular trichomes. To address this gap in our knowledge, we performed comparative metabolomics, transcriptomics, proteomics and 13C-labeling of type VI glandular trichomes and leaves from a cultivated (Solanum lycopersicum LA4024) and a wild (Solanum habrochaites LA1777) tomato accession. Specific features of glandular trichomes that drive the formation of secondary metabolites could be identified. Tomato type VI trichomes are photosynthetic but acquire their carbon essentially from leaf sucrose. The energy and reducing power from photosynthesis are used to support the biosynthesis of secondary metabolites, while the comparatively reduced Calvin-Benson-Bassham cycle activity may be involved in recycling metabolic CO2. Glandular trichomes cope with oxidative stress by producing high levels of polyunsaturated fatty acids, oxylipins, and glutathione. Finally, distinct mechanisms are present in glandular trichomes to increase the supply of precursors for the isoprenoid pathways. Particularly, the citrate-malate shuttle supplies cytosolic acetyl CoA and plastidic glycolysis and malic enzyme support the formation of plastidic pyruvate. A model is proposed on how glandular trichomes achieve high metabolic productivity. 
IPB Mainnav Search