jump to searchjump to navigationjump to content

Sort by: Year Type of publication

Displaying results 1 to 10 of 10.

Publications

Geissler, T.; Wessjohann, L. A.; A Whole-Plant Microtiter Plate Assay for Drought Stress Tolerance-Inducing Effects J. Plant Growth Regul. 30, 504-511, (2011) DOI: 10.1007/s00344-011-9212-1

The frequency and intensity of extreme weather events and global temperature are rising, which poses a potential threat to life, specifically crops, and therefore food and bioenergy supply. Reduced water availability has the most severe impact on potential grain yield. Negative effects of transient drought stress (dry spells) can be countered by drought tolerance-inducing chemicals. In search for useful compounds, biochemical assays are fast but limited in scope, whereas whole-plant assays are slow, require large amounts of compounds, and are usually not concentration-related. Here we report the development of a fast, concentration-dependent whole-plant assay using the fast growing duckweed Lemna minor L. 4-Amino-1,8-naphthalimide (1) and the imidacloprid metabolite 6-chloronicotinic acid (2) were affirmed as drought stress tolerance enhancers. Both also reduce oxidative stress-induced cell death in Arabidopsis thaliana (L.) Heynh. cell suspension culture but show differences in their mode of action.
Publications

Bakthir, H.; Awadh Ali, N. A.; Arnold, N.; Teichert, A.; Wessjohann, L.; Anticholinesterase activity of endemic plant extracts from Soqotra Afr. J. Tradit. Complement. Altern. Med. 8, 296-299, (2011) DOI: 10.4314/ajtcam.v8i3.65292

A total of 30 chloroform and methanol extracts from the following endemic Soqotran plants Acridocarpus socotranus Olive, Boswellia socotranao Balf.fil, Boswellia elongata Balf. fil., Caralluma socotrana N. Br, Cephalocroton socotranus Balf.f, Croton socotranus Balf. fil.., Dendrosicycos socotrana Balf.f., Dorstenia gigas Schweinf. ex Balf. fil., Eureiandra balfourii Cogn. & Balf. fil., Kalanchoe farinaceae Balf.f, Limonium sokotranum (Vierh) Radcl. Sm), Oldenlandia pulvinata, Pulicaria diversifolia( Balf. and Pulicaria stephanocarpa Balf. were screened for their acetylcholinesterase inhibitory activity by using in vitro Ellman method at 50 and 200 μg/ml concentrations. Chloroform extracts of Croton socotranus, Boswellia socotrana, Dorstenia gigas, and Pulicaria stephanocarpa as well as methanol extracts of Eureiandra balfourii exhibited inhibitory activities higher than 50 % at concentration of 200 μg. At a concentrations of 50 μg, the chloroform extract of Croton socotranus exhibited an inhibition of 40.6 %.
Publications

Ruela, H. S.; Leal, I. C. R.; de Almeida, M. R. A.; dos Santos, K. R. N.; Wessjohann, L. A.; Kuster, R. M.; Antibacterial and antioxidant activities and acute toxicity of Bumelia sartorum Mart., Sapotaceae, a Brazilian medicinal plant Rev. Bras. Farmacogn. 21, 86-91, (2011) DOI: 10.1590/S0102-695X2011005000035

In order to validate the Bumelia sartorum Mart., Sapotaceae, traditional use for infection diseases, this study evaluates the antibacterial activity of the stem bark fractions against methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) Staphylococcus aureus strains by using the agar dilution method and reported as MIC (minimal inhibitory concentration). In addition, the DPPH scavenging activity of these fractions was measured and the chemical composition and acute toxicity of the active fraction were also determined. The ethyl acetate (EtOAc) extract was chemically analyzed by LC/MS, direct ionization APCI/MS, 1H NMR and 13C-NMR. All fractions, except butanol extract, presented high antioxidant activity, especially the methanol and the EtOAc extracts, which showed EC50 values (5.67 and 5.30 µg/mL, respectively) considerably lower than the Gingko-standard EGb 761® (38.58 µg/mL). The antibacterial activity against S. aureus strains was observed in EtOAc (MIC 256-512 µg/mL), which showed a very low toxicity. The chemical study of this fraction revealed the abundant presence of polyphenolic compounds. The antibacterial and antioxidant activities reported in this paper for EtOAc extract from B. sartorum and the low toxicity of this fraction opens the possibility that it could be helpful for the developing of new antibacterial agents for treating S. aureus infections.
Publications

Rashan, L. J.; Franke, K.; Khine, M. M.; Kelter, G.; Fiebig, H. H.; Neumann, J.; Wessjohann, L. A.; Characterization of the anticancer properties of monoglycosidic cardenolides isolated from Nerium oleander and Streptocaulon tomentosum J. Ethnopharmacol. 134, 781-788, (2011) DOI: 10.1016/j.jep.2011.01.038

Aim of the studyFor identification of the active constituents we investigated the anticancer activity of cardenolides from Streptocaulon tomentosum Wight & Arn. (Asclepiadaceae) and from Nerium oleander L. (Apocynaceae) which are both used against cancer in the traditional medicine in their region of origin.Material, methods and resultsThe antiproliferative activity of cardenolides isolated from roots of Streptocaulon tomentosum (IC50 < 1–15.3 μM after 2 days in MCF7) and of cardenolide containing fractions from the cold aqueous extract of Nerium oleander leaves (“Breastin”, mean IC50 0.85 μg/ml in a panel of 36 human tumor cell lines), their influence on the cellular viability and on the cell cycle (block at the G2/M-phase or at the S-phase in tumor cells, respectively) were determined using different cell lines. The murine cell line L929 and normal non-tumor cells were not affected. Bioactivity guided fractionation of Breastin resulted in the isolation of the monoglycosidic cardenolides oleandrine, oleandrigeninsarmentoside, neritaloside, odoroside H, and odoroside A (IC50-values between 0.010 and 0.071 μg/ml).ConclusionsThe observed anticancer activities of extracts and isolated cardenolides are in agreement with the ethnomedicinal use of Streptocaulon tomentosum and Nerium oleander. The most active anticancer compounds from both species are monoglycosidic cardenolides possessing the 3β,14β-dihydroxy-5β-card-20(22)-enolide structure with or without an acetoxy group at C-16. The results indicate that the cytotoxic effects are induced by the inhibition of the plasma membrane bound Na+/K+-ATPase.
Publications

Pando, O.; Stark, S.; Denkert, A.; Porzel, A.; Preusentanz, R.; Wessjohann, L. A.; The Multiple Multicomponent Approach to Natural Product Mimics: Tubugis, N-Substituted Anticancer Peptides with Picomolar Activity J. Am. Chem. Soc. 133, 7692-7695, (2011) DOI: 10.1021/ja2022027

The synthesis of a new generation of highly cytotoxic tubulysin analogues (i.e., tubugis) is described. In the key step, the rare, unstable, and synthetically difficult to introduce tertiary amide–N,O-acetal moiety required for high potency in natural tubulysins is replaced by a dipeptoid element formed in an Ugi four-component reaction. Two of the four components required are themselves produced by other multicomponent reactions (MCRs). Thus, the tubugis represent the first examples of the synthesis of natural-product-inspired compounds using three intertwined isonitrile MCRs.
Publications

Nawaz, S. A.; Ayaz, M.; Brandt, W.; Wessjohann, L. A.; Westermann, B.; Cation–π and π–π stacking interactions allow selective inhibition of butyrylcholinesterase by modified quinine and cinchonidine alkaloids Biochem. Biophys. Res. Commun. 404, 935-940, (2011) DOI: 10.1016/j.bbrc.2010.12.084

Scaffold varied quaternized quinine and cinchonidine alkaloid derivatives were evaluated for their selective butyrylcholinesterase (BChE) inhibitory potential. Ki values were between 0.4–260.5 μM (non-competitive inhibition) while corresponding Kivalues to acetylcholinesterase (AChE) ranged from 7.0–400 μM exhibiting a 250-fold selectivity for BChE.Docking arrangements (GOLD, PLANT) revealed that the extended aromatic moieties and the quaternized nitrogen of the inhibitors were responsible for specific π–π stacking and π–cation interactions with the choline binding site and the peripheral anionic site of BChE’s active site.
Publications

Ramos Leal, I. C.; Netto dos Santos, K. R.; Itabaiana Júnior, I.; Ceva Antunes, O. A.; Porzel, A.; Wessjohann, L.; Machado Kuster, R.; Ceanothane and Lupane Type Triterpenes from Zizyphus joazeiro – An Anti-Staphylococcal Evaluation Planta Med. 76, 47-52, (2010) DOI: 10.1055/s-0029-1185947

The present paper describes the phytochemical and anti-staphylococcal activity investigation of the dichloromethane extract of the Brazilian plant Zizyphus joazeiro Mart. The purification steps were guided by bioassays against 17 bacterial strains of clinical sources, including methicillin-resistant (MRSA) and ‐sensitive (MSSA) Staphylococcus aureus as well as MRSA (ATCC 33591) and MSSA (ATCC 29213) reference strains. One of the more active fractions is comprised of three lupane-type triterpenes, the methylbetulinate (1) as well as the known betulinic (2) and alphitolic (3) acids and, for the first time in the Z. joazeiro, two ceanothane type triterpenes, the methylceanothate (4) and the epigouanic acid A (5). These substances were assayed against one clinical (PVL+) and the reference strains of S. aureus as well as the ATTC 12228 strain of S. epidermidis, in concentrations that varied from 128 to 0.125 µg/mL in order to establish the minimum inhibitory concentration (MIC) of the drugs. The minimum bactericide concentration (MBC) was also evaluated to distinguish the bactericidal from bacteriostatic activity of the crude fractions and single compounds. Compounds 3 and 4 possess the highest antibacterial activity. They inhibit all bacteria tested at 32 µg/mL and 16 µg/mL, respectively, while the other compounds showed no activity at 128 µg/mL. In contrast to single compounds, the triterpenoid fraction showed bactericidal activity at 256 µg/mL. Structural elucidations are based on 1D and 2D NMR spectroscopy as well as HR‐FT‐ICR‐MS experiments.
Publications

Preusentanz, R.; Pando, O.; Wessjohann, L.; Kleine, ungewöhnliche Peptide gegen Krebs Nachr. Chem. 58, 526-532, (2010) DOI: 10.1002/nadc.201069166

N‐alkylierte Peptide wie die Dolastatine und vor allem die jüngeren Tubulysine gelten als vielversprechende Leitsubstanzen für die Krebstherapie. Konjugate der Tubulysine vereinen Tumorselektivität und Aktivität in bisher nicht bekanntem Maß.
Publications

Haack, M.; Löwinger, M.; Lippmann, D.; Kipp, A.; Pagnotta, E.; Iori, R.; Monien, B. H.; Glatt, H.; Brauer, M. N.; Wessjohann, L. A.; Brigelius-Flohé, R.; Breakdown products of neoglucobrassicin inhibit activation of Nrf2 target genes mediated by myrosinase-derived glucoraphanin hydrolysis products Biol. Chem. 391, 1281-1293, (2010) DOI: 10.1515/bc.2010.134

Glucosinolates (GLSs) present in Brassica vegetables serve as precursors for biologically active metabolites, which are released by myrosinase and induce phase 2 enzymes via the activation of Nrf2. Thus, GLSs are generally considered beneficial. The pattern of GLSs in plants is various, and contents of individual GLSs change with growth phase and culture conditions. Whereas some GLSs, for example, glucoraphanin (GRA), the precursor of sulforaphane (SFN), are intensively studied, functions of others such as the indole GLS neoglucobrassicin (nGBS) are rather unknown as are functions of combinations thereof. We therefore investigated myrosinase-treated GRA, nGBS and synthetic SFN for their ability to induce NAD(P)H:quinone oxidoreductase 1 (NQO1) as typical phase 2 enzyme, and glutathione peroxidase 2 (GPx2) as novel Nrf2 target in HepG2 cells. Breakdown products of nGBS potently inhibit both GRA-mediated stimulation of NQO1 enzyme and Gpx2 promoter activity. Inhibition of promoter activity depends on the presence of an intact xenobiotic responsive element (XRE) and is also observed with benzo[a]pyrene, a typical ligand of the aryl hydrocarbon receptor (AhR), suggesting that suppressive effects of nGBS are mediated via AhR/XRE pathway. Thus, the AhR/XRE pathway can negatively interfere with the Nrf2/ARE pathway which has consequences for dietary recommendations and, therefore, needs further investigation.
Publications

Geissler, T.; Brandt, W.; Porzel, A.; Schlenzig, D.; Kehlen, A.; Wessjohann, L.; Arnold, N.; Acetylcholinesterase inhibitors from the toadstool Cortinarius infractus Bioorg. Med. Chem. 18, 2173-2177, (2010) DOI: 10.1016/j.bmc.2010.01.074

Inhibition of acetylcholinesterase (AChE) and therefore prevention of acetylcholine degradation is one of the most accepted therapy opportunities for Alzheimer´s disease (AD), today. Due to lack of selectivity of AChE inhibitor drugs on the market, AD-patients suffer from side effects like nausea or vomiting. In the present study the isolation of two alkaloids, infractopicrin (1) and 10-hydroxy-infractopicrin (2), from Cortinarius infractus Berk. (Cortinariaceae) is presented. Both compounds show AChE-inhibiting activity and possess a higher selectivity than galanthamine. Docking studies show that lacking π–π-interactions in butyrylcholinesterase (BChE) are responsible for selectivity. Studies on other AD pathology related targets show an inhibitory effect of both compounds on self-aggregation of Aβ-peptides but not on AChE induced Aβ-peptide aggregation. Low cytotoxicity as well as calculated pharmacokinetic data suggest that the natural products could be useful candidates for further drug development.

This page was last modified on 11.02.2013.

IPB Mainnav Search