jump to searchjump to navigationjump to content

Publications - Bioorganic Chemistry

Sort by: Year Type of publication

Displaying results 1 to 6 of 6.

Publications

Anderle, C.; Hennig, S.; Kammerer, B.; Li, S.-M.; Wessjohann, L.; Gust, B.; Heide, L.; Improved Mutasynthetic Approaches for the Production of Modified Aminocoumarin Antibiotics Chem. Biol. 14, 955-967, (2007) DOI: 10.1016/j.chembiol.2007.07.014

This study reports improved mutasynthetic approaches for the production of aminocoumarin antibiotics. Previously, the mutasynthetic production of aminocoumarins with differently substituted benzoyl moieties was limited by the substrate specificity of the amide synthetase CloL. We expressed two amide synthetases with different substrate specificity, CouL and SimL, in appropriately engineered producer strains. After feeding of precursor analogs that were not accepted by CloL, but by SimL or CouL, a range of aminocoumarins, unattainable in our previous experiments, was produced and isolated in preparative amounts. Further, we developed a two-stage mutasynthesis procedure for the production of hybrid antibiotics that showed the substitution pattern of novobiocin in the aminocoumarin moiety and that of clorobiocin in the deoxysugar moiety. The substitution pattern of the benzoyl moiety was determined by external addition of an appropriate precursor. Twenty-five aminocoumarin compounds were prepared by these methods, and their structures were elucidated with mass and 1H-NMR spectroscopy.
Publications

Galm, U.; Dessoy, M. A.; Schmidt, J.; Wessjohann, L. A.; Heide, L.; In Vitro and In Vivo Production of New Aminocoumarins by a Combined Biochemical, Genetic, and Synthetic Approach Chem. Biol. 11, 173-183, (2004) DOI: 10.1016/j.chembiol.2004.01.012

The aminocoumarin antibiotics clorobiocin, novobiocin, and coumermycin A1 are inhibitors of bacterial gyrase. Their chemical structures contain amide bonds, formed between an aminocoumarin ring and an aromatic acyl component, which is 3-dimethylallyl-4-hydroxybenzoate in the case of novobiocin and clorobiocin. These amide bonds are formed under catalysis of the gene products of cloL, novL, and couL, respectively. We first examined the substrate specificity of the purified amide synthetases CloL, NovL, and CouL for the various analogs of the prenylated benzoate moiety. We then generated new aminocoumarin antibiotics by feeding synthetic analogs of the 3-dimethylallyl-4-hydroxybenzoate moiety to a mutant strain defective in the biosynthesis of the prenylated benzoate moiety. This resulted in the formation of 32 new aminocoumarin compounds. The structures of these compounds were elucidated using FAB-MS and 1H-NMR spectroscopy.
Publications

Schmutz, E.; Steffensky, M.; Schmidt, J.; Porzel, A.; Li, S.-M.; Heide, L.; An unusual amide synthetase (CouL) from the coumermycin A1 biosynthetic gene cluster from Streptomyces rishiriensis DSM 40489 Eur. J. Biochem. 270, 4413-4419, (2003) DOI: 10.1046/j.1432-1033.2003.03830.x

The aminocoumarin antibiotic coumermycin A1 produced by Streptomyces rishiriensis DSM 40489 contains two amide bonds. The biosynthetic gene cluster of coumermycin contains a putative amide synthetase gene, couL , encoding a protein of 529 amino acids. CouL was overexpressed as hexahistidine fusion protein in Escherichia coli and purified by metal affinity chromatography, resulting in a nearly homogenous protein. CouL catalysed the formation of both amide bonds of coumermycin A1, i.e. between the central 3‐methylpyrrole‐2,4‐dicarboxylic acid and two aminocoumarin moieties. Gel exclusion chromatography showed that the enzyme is active as a monomer. The activity was strictly dependent on the presence of ATP and Mn2+ or Mg2+. The apparent K m values were determined as 26 µm for the 3‐methylpyrrole‐2,4‐dicarboxylic acid and 44 µm for the aminocoumarin moiety, respectively. Several analogues of the pyrrole dicarboxylic acid were accepted as substrates. In contrast, pyridine carboxylic acids were not accepted. 3‐Dimethylallyl‐4‐hydroxybenzoic acid, the acyl component in novobiocin biosynthesis, was well accepted, despite its structural difference from the genuine acyl substrate of CouL.
Publications

Xu, H.; Wang, Z.-X.; Schmidt, J.; Heide, L.; Li, S.-M.; Genetic analysis of the biosynthesis of the pyrrole and carbamoyl moieties of coumermycin A1 and novobiocin Mol. Gen. Genomics 268, 387-396, (2002) DOI: 10.1007/s00438-002-0759-1

The aminocoumarin antibiotic coumermycin A1 contains a central and two terminal pyrrole moieties. The coumermycin gene cluster in Streptomyces rishiriensis contains three genes (couN3, couN4 and couN5) that show sequence similarity to genes involved in the biosynthesis of the pyrrole moieties of pyoluteorin in Pseudomonas fluorescens and of undecylprodiginine in S. coelicolor. The gene couN3, which codes for a putative L-prolyl-S-PCP dehydrogenase, and the gene couN4, which encodes a putative L-prolyl-AMP ligase, were disrupted using in-frame deletion and insertional inactivation, respectively. HPLC analysis of culture extracts showed that formation of the two terminal pyrrole moieties was abolished in the couN3 - und couN4 - mutants. The mutants accumulated coumermycin D, which contains only the central pyrrole moiety. This result not only confirmed the involvement of couN3 and couN4 in the biosynthesis of the terminal pyrrole-2-carboxylic acid moieties of coumermycin A1, but also indicated, for the first time, that the central 3-methylpyrrole-2,4-dicarboxylic acid unit of the coumermycins is formed by a biosynthetic pathway that differs from that used to assemble the terminal pyrrole moieties. novN, a putative carbamoyl transferase gene from the gene cluster for novobiocin biosynthesis in S. spheroides was expressed in the couN3 - mutant. This led to the formation of bis-carbamoylated coumermycin D, a novel compound of the coumermycin series.
Publications

Li, S.-M.; Westrich, L.; Schmidt, J.; Kuhnt, C.; Heide, L.; Methyltransferase genes in Streptomyces rishiriensis: new coumermycin derivatives from gene-inactivation experiments Microbiol. 148, 3317-3326, (2002) DOI: 10.1099/00221287-148-10-3317

The coumarin antibiotic coumermycin A1 contains at least eight methyl groups, presumably derived from S-adenosylmethionine. Two putative methyltransferase genes, couO and couP, of the coumermycin A1 biosynthetic gene cluster were inactivated by in-frame deletion. In the resulting mutants, coumermycin A1 production was abolished. New coumermycin derivatives were accumulated instead, and were identified by HPLC-MS using selected reaction monitoring via electrospray ionization. couO mutants accumulated a coumermycin derivative lacking the methyl groups at C-8 of the characteristic aminocoumarin rings, whereas in the couP mutant a coumermycin derivative lacking the methyl groups at the 4-hydroxyl groups of the two deoxysugar moieties was identified. These results provided evidence that couO encodes a C-methyltransferase responsible for the transfer of a methyl group to C-8 of the aminocoumarin ring, and couP an O-methyltransferase for methylation of 4-OH of the sugar in the biosynthesis of coumermycin A1, respectively. C-methylation of the aminocoumarin ring is considered as an early step of coumermycin biosynthesis. Nevertheless, the intermediates with the non-methylated aminocoumarin ring were accepted by the enzymes catalysing the subsequent steps of the pathway. The new, demethylated secondary metabolites were produced in an amount at least as high as that of coumermycin A1 in the wild-type.
Publications

Galm, U.; Schimana, J.; Fiedler, H.-P.; Schmidt, J.; Li, S.-M.; Heide, L.; Cloning and analysis of the simocyclinone biosynthetic gene cluster of Streptomyces antibioticus Tü 6040 Arch. Microbiol. 178, 102-114, (2002) DOI: 10.1007/s00203-002-0429-z

The biosynthetic gene cluster of the aminocoumarin antibiotic simocyclinone D8 was cloned by screening a cosmid library of Streptomyces antibioticus Tü 6040 with a heterologous probe from a gene encoding a cytochrome P450 enzyme involved in the biosynthesis of the aminocoumarin antibiotic novobiocin. Sequence analysis of a 39.4-kb region revealed the presence of 38 ORFs. Six of the identified ORFs showed striking similarity to genes from the biosynthetic gene clusters of the aminocoumarin antibiotics novobiocin and coumermycin A1. Simocyclinone also contains an angucyclinone moiety, and 12 of the ORFs showed high sequence similarity to biosynthetic genes of other angucyclinone antibiotics. Possible functions within the biosynthesis of simocyclinone D8 could be assigned to 23 ORFs by comparison with sequences in GenBank. Experimental proof for the function of the identified gene cluster was provided by a gene inactivation experiment, which resulted in the abolishment of the formation of the aminocoumarin moiety of simocyclinone. Feeding of the mutant with the aminocoumarin moiety of novobiocin led to a new, artificial simocyclinone derivative.
IPB Mainnav Search