Authors;Title;Publication;Volume;Booktitle;Editors;Pages;Year Liu, N., Jiang, X., Zhong, G., Wang, W., Hake, K., Matschi, S., Lederer, S., Hoehenwarter, W., Sun, Q., Lee, J., Romeis, T., Tang, D. & ;CAMTA3 repressor destabilization triggers TIR domain protein TN2-mediated autoimmunity in the Arabidopsis exo70B1 mutant;Plant Cell;0;0;;0;2024 Liese, A., Eichstädt, B., Lederer, S., Schulz, P., Oehlschläger, J., Matschi, S., Feijó, J. A., Schulze, W. X., Konrad, K. R., Romeis, T. & ;Imaging of plant calcium-sensor kinase conformation monitors real time calcium-dependent decoding in planta;Plant Cell;36;0;;276-296;2024 Erickson, J. L., Prautsch, J., Reynvoet, F., Niemeyer, F., Hause, G., Johnston, I. G., Schattat, M. H. & ;Stromule geometry allows optimal spatial regulation of organelle interactions in the quasi-2D cytoplasm;Plant Cell Physiol.;0;0;;0;2023 Abukhalaf, M., Proksch, C., Thieme, D., Ziegler, J., Hoehenwarter, W. & ;Changing turn-over rates regulate abundance of tryptophan, GS biosynthesis, IAA transport and photosynthesis proteins in Arabidopsis growth defense transitions;BMC Biol.;21;0;;249;2023 Prautsch, J., Erickson, J., Özyürek, S., Gormanns, R., Franke, L., Lu, Y., Marx, J., Niemeyer, F., Parker, J. E., Stuttmann, J., Schattat, M. H. & ;Effector XopQ-induced stromule formation in Nicotiana benthamiana depends on ETI signaling components ADR1 and NRG1;Plant Physiol.;191;0;;161-176;2023 Ortmann, S., Marx, J., Lampe, C., Handrick, V., Ehnert, T.-M., Zinecker, S., Reimers, M., Bonas, U., Erickson, J. & ;A conserved microtubule-binding region in Xanthomonas XopL is indispensable for induced plant cell death reactions;PLOS Pathog.;19;0;;e1011263;2023 John, W. A., Lückel, B., Matschiavelli, N., Hübner, R., Matschi, S., Hoehenwarter, W., Sachs, S. & ;Endocytosis is a significant contributor to uranium(VI) uptake in tobacco (Nicotiana tabacum) BY-2 cells in phosphate-deficient culture;Sci. Total Environ.;823;0;;153700;2022 Jäckel, L., Schnabel, A., Stellmach, H., Klauß, U., Matschi, S., Hause, G., Vogt, T. & ;The terminal enzymatic step in piperine biosynthesis is co‐localized with the product piperine in specialized cells of black pepper (Piper nigrum L.);Plant J.;111;0;;731–747;2022 Erickson, J., Weckwerth, P., Romeis, T., Lee, J. & ;What’s new in protein kinase/phosphatase signalling in the control of plant immunity?;Essays in Biochemistry;66;0;;621-634;2022 Zönnchen, J., Gantner, J., Lapin, D., Barthel, K., Eschen‐Lippold, L., Erickson, J. L., Landeo Villanueva, S., Zantop, S., Kretschmer, C., Joosten, M. H. A. J., Parker, J. E., Guerois, R., Stuttmann, J. & ;EDS1 complexes are not required for PRR responses and execute TNL‐ETI from the nucleus in Nicotiana benthamiana;New Phytol.;236;0;;2249-2264;2022 Lee, J., Romeis, T. & ;An epiphany for plant resistance proteins and its impact on calcium‐based immune signalling;New Phytol.;234;0;;769-772;2022 Schulz, P., Piepenburg, K., Lintermann, R., Herde, M., Schöttler, M. A., Schmidt, L. K., Ruf, S., Kudla, J., Romeis, T., Bock, R. & ;Improving plant drought tolerance and growth under water limitation through combinatorial engineering of signaling networks;Plant Biotechnol. J.;19;0;;74–86;2021 Li, K., Prada, J., Damineli, D. S. C., Liese, A., Romeis, T., Dandekar, T., Feijó, J. A., Hedrich, R., Konrad, K. R. & ;An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca2+ and H+ reveals new insights into ion signaling in plants;New Phytol.;230;0;;2292-2310;2021 Gorzolka, K., Perino, E. H. B., Lederer, S., Smolka, U., Rosahl, S. & ;Lysophosphatidylcholine 17:1 from the Leaf Surface of the Wild Potato Species Solanum bulbocastanum Inhibits Phytophthora infestans;J. Agr. Food Chem.;69;0;;5607-5617;2021 Eichstädt, B., Lederer, S., Trempel, F., Jiang, X., Guerra, T., Waadt, R., Lee, J., Liese, A., Romeis, T. & ;Plant immune memory in systemic tissue does not involve changes in rapid calcium signaling;Front. Plant Sci.;12;0;;798230;2021 Guerra, T., Schilling, S., Hake, K., Gorzolka, K., Sylvester, F.-P., Conrads, B., Westermann, B., Romeis, T. & ;Calcium‐dependent protein kinase 5 links calcium‐signaling with N‐Hydroxy‐L‐pipecolic acid‐ and SARD1‐dependent immune memory in systemic acquired resistance;New Phytol.;225;0;;310-325;2020 Guerra, T., Romeis, T. & ;N-hydroxypipecolic acid: a general and conserved activator of systemic plant immunity;J. Exp. Bot.;71;0;;6193-6196;2020 Durian, G., Sedaghatmehr, M., Matallana-Ramirez, L. P., Schilling, S. M., Schaepe, S., Guerra, T., Herde, M., Witte, C.-P., Mueller-Roeber, B., Schulze, W. X., Balazadeh, S., Romeis, T. & ;Calcium-Dependent Protein Kinase CPK1 Controls Cell Death by In Vivo Phosphorylation of Senescence Master Regulator ORE1;Plant Cell;32;0;;1610-1625;2020 Wirthmueller, L., Romeis, T. & ;Sp(l)icing up PepR signalling;Nat. Plants;6;0;;912-913;2020 Wang, W., Liu, N., Gao, C., Cai, H., Romeis, T., Tang, D. & ;The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane;New Phytol.;227;0;;529-544;2020 Seybold, H., Bortlik, J., Conrads, B., Hoehenwarter, W., Romeis, T. & ;Prioritization of abiotic and biotic stress responses by direct linkage of ABI1 phosphatase and CPK5 calcium-dependent protein kinase;bioRxiv;0;0;;0;2019 Matschi, S., Hake, K., Herde, M., Hause, B., Romeis, T. & ;The Calcium-Dependent Protein Kinase CPK28 Regulates Development by Inducing Growth Phase-Specific, Spatially Restricted Alterations in Jasmonic Acid Levels Independent of Defense Responses in Arabidopsis;Plant Cell;27;0;;591-606;2015 Seybold, H., Trempel, F., Ranf, S., Scheel, D., Romeis, T., Lee, J. & ;Ca2+ signalling in plant immune response: from pattern recognition receptors to Ca2+ decoding mechanisms;New Phytol.;204;0;;782-790;2014 Ludwig, A. A., Saitoh, H., Felix, G., Freymark, G., Miersch, O., Wasternack, C., Boller, T., Jones, J. D. G., Romeis, T. & ;Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants;Proc. Natl. Acad. Sci. U.S.A.;102;0;;10736-10741;2005