jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: sort ascending Year Type of publication

Displaying results 271 to 279 of 279.

Publications

Ortmann, S.; Marx, J.; Lampe, C.; Handrick, V.; Ehnert, T.-M.; Zinecker, S.; Reimers, M.; Bonas, U.; Erickson, J.; A conserved microtubule-binding region in Xanthomonas XopL is indispensable for induced plant cell death reactions PLOS Pathog. 19, e1011263, (2023) DOI: 10.1371/journal.ppat.1011263

Pathogenic Xanthomonas bacteria cause disease on more than 400 plant species. These Gram-negative bacteria utilize the type III secretion system to inject type III effector proteins (T3Es) directly into the plant cell cytosol where they can manipulate plant pathways to promote virulence. The host range of a given Xanthomonas species is limited, and T3E repertoires are specialized during interactions with specific plant species. Some effectors, however, are retained across most strains, such as Xanthomonas Outer Protein L (XopL). As an ‘ancestral’ effector, XopL contributes to the virulence of multiple xanthomonads, infecting diverse plant species. XopL homologs harbor a combination of a leucine-rich-repeat (LRR) domain and an XL-box which has E3 ligase activity. Despite similar domain structure there is evidence to suggest that XopL function has diverged, exemplified by the finding that XopLs expressed in plants often display bacterial species-dependent differences in their sub-cellular localization and plant cell death reactions. We found that XopL from X. euvesicatoria (XopLXe) directly associates with plant microtubules (MTs) and causes strong cell death in agroinfection assays in N. benthamiana. Localization of XopLXe homologs from three additional Xanthomonas species, of diverse infection strategy and plant host, revealed that the distantly related X. campestris pv. campestris harbors a XopL (XopLXcc) that fails to localize to MTs and to cause plant cell death. Comparative sequence analyses of MT-binding XopLs and XopLXcc identified a proline-rich-region (PRR)/α-helical region important for MT localization. Functional analyses of XopLXe truncations and amino acid exchanges within the PRR suggest that MT-localized XopL activity is required for plant cell death reactions. This study exemplifies how the study of a T3E within the context of a genus rather than a single species can shed light on how effector localization is linked to biochemical activity.
Publications

Nietzschmann, L.; Smolka, U.; Perino, E. H. B.; Gorzolka, K.; Stamm, G.; Marillonnet, S.; Bürstenbinder, K.; Rosahl, S.; The secreted PAMP-induced peptide StPIP1_1 activates immune responses in potato Sci. Rep. 13, 20534, (2023) DOI: 10.1038/s41598-023-47648-x

Treatment of potato plants with the pathogen-associated molecular pattern Pep-13 leads to the activation of more than 1200 genes. One of these, StPIP1_1, encodes a protein of 76 amino acids with sequence homology to PAMP-induced secreted peptides (PIPs) from Arabidopsis thaliana. Expression of StPIP1_1 is also induced in response to infection with Phytophthora infestans, the causal agent of late blight disease. Apoplastic localization of StPIP1_1-mCherry fusion proteins is dependent on the presence of the predicted signal peptide. A synthetic peptide corresponding to the last 13 amino acids of StPIP1_1 elicits the expression of the StPIP1_1 gene itself, as well as that of pathogenesis related genes. The oxidative burst induced by exogenously applied StPIP1_1 peptide in potato leaf disks is dependent on functional StSERK3A/B, suggesting that StPIP1_1 perception occurs via a receptor complex involving the co-receptor StSERK3A/B. Moreover, StPIP1_1 induces expression of FRK1 in Arabidopsis in an RLK7-dependent manner. Expression of an RLK from potato with high sequence homology to AtRLK7 is induced by StPIP1_1, by Pep-13 and in response to infection with P. infestans. These observations are consistent with the hypothesis that, upon secretion, StPIP1_1 acts as an endogenous peptide required for amplification of the defense response.
Publications

Vainonen, J. P.; Gossens, R.; Krasensky-Wrzaczek, J.; De Masi, R.; Danciu, I.; Puukko, T.; Battchikova, N.; Jonak, C.; Wirthmueller, L.; Wrzaczek, M.; Shapiguzov, A.; Kangasjärvi, J.; Poly(ADP-ribose)-binding protein RCD1 is a plant PARylation reader regulated by Photoregulatory Protein Kinases Commun. Biol. 6, 429, (2023) DOI: 10.1038/s42003-023-04794-2

Poly(ADP-ribosyl)ation (PARylation) is a reversible post-translational protein modification that has profound regulatory functions in metabolism, development and immunity, and is conserved throughout the eukaryotic lineage. Contrary to metazoa, many components and mechanistic details of PARylation have remained unidentified in plants. Here we present the transcriptional co-regulator RADICAL-INDUCED CELL DEATH1 (RCD1) as a plant PAR-reader. RCD1 is a multidomain protein with intrinsically disordered regions (IDRs) separating its domains. We have reported earlier that RCD1 regulates plant development and stress-tolerance by interacting with numerous transcription factors (TFs) through its C-terminal RST domain. This study suggests that the N-terminal WWE and PARP-like domains, as well as the connecting IDR play an important regulatory role for RCD1 function. We show that RCD1 binds PAR in vitro via its WWE domain and that PAR-binding determines RCD1 localization to nuclear bodies (NBs) in vivo. Additionally, we found that RCD1 function and stability is controlled by Photoregulatory Protein Kinases (PPKs). PPKs localize with RCD1 in NBs and phosphorylate RCD1 at multiple sites affecting its stability. This work proposes a mechanism for negative transcriptional regulation in plants, in which RCD1 localizes to NBs, binds TFs with its RST domain and is degraded after phosphorylation by PPKs.
Publications

Aryal, B.; Xia, J.; Hu, Z.; Stumpe, M.; Tsering, T.; Liu, J.; Huynh, J.; Fukao, Y.; Glöckner, N.; Huang, H.-Y.; Sancho-Andrés, G.; Pakula, K.; Ziegler, J.; Gorzolka, K.; Zwiewka, M.; Nodzynski, T.; Harter, K.; Sánchez-Rodríguez, C.; Jasiński, M.; Rosahl, S.; Geisler, M. M.; An LRR receptor kinase controls ABC transporter substrate preferences during plant growth-defense decisions Curr. Biol. 33, 2008-2023, (2023) DOI: 10.1016/j.cub.2023.04.029

The exporter of the auxin precursor indole-3-butyric acid (IBA), ABCG36/PDR8/PEN3, from the model plant Arabidopsis has recently been proposed to also function in the transport of the phytoalexin camalexin. Based on these bonafide substrates, it has been suggested that ABCG36 functions at the interface between growth and defense. Here, we provide evidence that ABCG36 catalyzes the direct, ATP-dependent export of camalexin across the plasma membrane. We identify the leucine-rich repeat receptor kinase, QIAN SHOU KINASE1 (QSK1), as a functional kinase that physically interacts with and phosphorylates ABCG36. Phosphorylation of ABCG36 by QSK1 unilaterally represses IBA export, allowing camalexin export by ABCG36 conferring pathogen resistance. As a consequence, phospho-dead mutants of ABCG36, as well as qsk1 and abcg36 alleles, are hypersensitive to infection with the root pathogen Fusarium oxysporum, caused by elevated fungal progression. Our findings indicate a direct regulatory circuit between a receptor kinase and an ABC transporter that functions to control transporter substrate preference during plant growth and defense balance decisions.
Publications

Abukhalaf, M.; Proksch, C.; Thieme, D.; Ziegler, J.; Hoehenwarter, W.; Changing turn-over rates regulate abundance of tryptophan, GS biosynthesis, IAA transport and photosynthesis proteins in Arabidopsis growth defense transitions BMC Biol. 21, 249, (2023) DOI: 10.1186/s12915-023-01739-3

Background Shifts in dynamic equilibria of the abundance of cellular molecules in plant-pathogen interactions need further exploration. We induced PTI in optimally growing Arabidopsis thaliana seedlings for 16 h, returning them to growth conditions for another 16 h. Methods Turn-over and abundance of 99 flg22 responding proteins were measured chronologically using a stable heavy nitrogen isotope partial labeling strategy and targeted liquid chromatography coupled to mass spectrometry (PRM LC–MS). These experiments were complemented by measurements of mRNA and phytohormone levels. Results Changes in synthesis and degradation rate constants (Ks and Kd) regulated tryptophane and glucosinolate, IAA transport, and photosynthesis-associated protein (PAP) homeostasis in growth/PTI transitions independently of mRNA levels. Ks values increased after elicitation while protein and mRNA levels became uncorrelated. mRNA returned to pre-elicitation levels, yet protein abundance remained at PTI levels even 16 h after media exchange, indicating protein levels were robust and unresponsive to transition back to growth. The abundance of 23 PAPs including FERREDOXIN-NADP( +)-OXIDOREDUCTASE (FNR1) decreased 16 h after PAMP exposure, their depletion was nearly abolished in the myc234 mutant. FNR1 Kd increased as mRNA levels decreased early in PTI, its Ks decreased in prolonged PTI. FNR1 Kd was lower in myc234, mRNA levels decreased as in wild type. Conclusions Protein Kd and Ks values change in response to flg22 exposure and constitute an additional layer of protein abundance regulation in growth defense transitions next to changes in mRNA levels. Our results suggest photosystem remodeling in PTI to direct electron flow away from the photosynthetic carbon reaction towards ROS production as an active defense mechanism controlled post-transcriptionally and by MYC2 and homologs. Target proteins accumulated later and PAP and auxin/IAA depletion was repressed in myc234 indicating a positive effect of the transcription factors in the establishment of PTI.
Publications

Heuermann, D.; Döll, S.; Schweneker, D.; Feuerstein, U.; Gentsch, N.; von Wirén, N.; Distinct metabolite classes in root exudates are indicative for field- or hydroponically-grown cover crops Front. Plant Sci. 14, 1122285, (2023) DOI: 10.3389/fpls.2023.1122285

Introduction: Plants release a large variety of metabolites via their roots to shape physico-chemical soil properties and biological processes in the rhizosphere. While hydroponic growth conditions facilitate accessibility of the root system and recovery of root exudates, the natural soil environment can alter root metabolism and exudate secretion, raising the question to what extent the quantity and composition of root exudates released in hydroponic growth systems reflect those recovered from soil-grown roots. Methods: Using a root washing method, we sampled root exudates from four field-grown cover crop species with wide taxonomic distance, namely white mustard, lacy phacelia, bristle oat, and Egyptian clover. A set of primary metabolites and secondary metabolites were analysed in a targeted and untargeted LC-MS-based approach, respectively, for comparison with exudates obtained from hydroponically cultured plants. Results and discussion: We found that hydroponically cultivated plants released a larger amount of total carbon, but that the recovery of total carbon was not indicative for the diversity of metabolites in root exudates. In the field, root exudates from phacelia and clover contained 2.4 to 3.8 times more secondary metabolites, whereas carbon exudation in hydroponics was 5- to 4-fold higher. The composition of the set of metabolites identified using the untargeted approach was much more distinct among all species and growth conditions than that of quantified primary metabolites. Among secondary metabolite classes, the presence of lipids and lipid-like molecules was highly indicative for field samples, while the release of a large amount of phenylpropanoids, organoheterocyclic compounds or benzenoids was characteristic for clover, mustard or oat, respectively, irrespective of the cultivation condition. However, at the compound level the bulk of released metabolites was specific for cultivation conditions in every species, which implies that hydroponically sampled root exudates poorly reflect the metabolic complexity of root exudates recovered from field-grown plants.
Printed publications

Liu, N.; Jiang, X.; Zhong, G.; Wang, W.; Hake, K.; Matschi, S.; Lederer, S.; Hoehenwarter, W.; Sun, Q.; Lee, J.; Romeis, T.; Tang, D.; CAMTA3 repressor destabilization triggers TIR domain protein TN2-mediated autoimmunity in the Arabidopsis exo70B1 mutant Plant Cell (2024) DOI: 10.1093/plcell/koae036

Calcium-dependent protein kinases (CPKs) can decode and translate intracellular calcium signals to induce plant immunity. Mutation of the exocyst subunit gene EXO70B1 causes autoimmunity that depends on CPK5 and the Toll/interleukin-1 receptor (TIR) domain resistance protein TIR-NBS2 (TN2), where direct interaction with TN2 stabilizes CPK5 kinase activity. However, how the CPK5–TN2 interaction initiates downstream immune responses remains unclear. Here, we show that, besides CPK5 activity, the physical interaction between CPK5 and functional TN2 triggers immune activation in exo70B1 and may represent reciprocal regulation between CPK5 and the TIR domain functions of TN2 in Arabidopsis (Arabidopsis thaliana). Moreover, we detected differential phosphorylation of the calmodulin-binding transcription activator 3 (CAMTA3) in the cpk5 background. CPK5 directly phosphorylates CAMTA3 at S964, contributing to its destabilization. The gain-of-function CAMTA3A855V variant that resists CPK5-induced degradation rescues immunity activated through CPK5 overexpression or exo70B1 mutation. Thus, CPK5-mediated immunity is executed through CAMTA3 repressor degradation via phosphorylation-induced and/or calmodulin-regulated processes. Conversely, autoimmunity in camta3 also partially requires functional CPK5. While the TIR domain activity of TN2 remains to be tested, our study uncovers a TN2–CPK5–CAMTA3 signaling module for exo70B1-mediated autoimmunity, highlighting the direct embedding of a calcium-sensing decoder element within resistance signalosomes.
Printed publications

Thirulogachandar, V.; Govind, G.; Hensel, G.; Kale, S. M.; Kuhlmann, M.; Eschen-Lippold, L.; Rutten, T.; Koppolu, R.; Rajaraman, J.; Palakolanu, S. R.; Seiler, C.; Sakuma, S.; Jayakodi, M.; Lee, J.; Kumlehn, J.; Komatsuda, T.; Schnurbusch, T.; Sreenivasulu, N.; HOMEOBOX2, the paralog of SIX-ROWED SPIKE1/HOMEOBOX1, is dispensable for barley spikelet development J. Exp. Bot. erae044, (2024) DOI: 10.1093/jxb/erae044

The HD-ZIP class I transcription factor, HvHOX1 (Homeobox 1) or VRS1 (Vulgare Row-type Spike 1 or Six-rowed Spike 1), regulates lateral spikelet fertility in barley (Hordeum vulgare L.). It was shown that HvHOX1 has a high expression only in lateral spikelets, while its paralog HvHOX2 was found to be expressed in different plant organs. Yet, the mechanistic function of HvHOX1 and HvHOX2 during spikelet development is still fragmentary. Here, we show that compared to HvHOX1, HvHOX2 is more highly conserved across different barley genotypes and Hordeum species, hinting at a possibly vital but still unclarified biological role. Using bimolecular fluorescence complementation, DNA-binding, and transactivation assays, we validate that HvHOX1 and HvHOX2 are bona fide transcriptional activators that may potentially heterodimerize. Accordingly, both genes exhibit similar spatiotemporal expression patterns during spike development and growth, albeit their mRNA levels differ quantitatively. We show that HvHOX1 delays the lateral spikelet meristem differentiation and affects fertility by aborting the reproductive organs. Interestingly, the ancestral relationship of these genes inferred from their co-expressed gene networks suggested that HvHOX1 and HvHOX2 might play a similar role during barley spikelet development. However, CRISPR-derived mutants of HvHOX1 and HvHOX2 demonstrated the suppressive role of HvHOX1 on lateral spikelets, while the loss of HvHOX2 does not influence spikelet development. Collectively, our study shows that through the suppression of reproductive organs, lateral spikelet fertility is regulated by HvHOX1, whereas HvHOX2 is dispensable for spikelet development in barley.
Publications

Liese, A.; Eichstädt, B.; Lederer, S.; Schulz, P.; Oehlschläger, J.; Matschi, S.; Feijó, J. A.; Schulze, W. X.; Konrad, K. R.; Romeis, T.; Imaging of plant calcium-sensor kinase conformation monitors real time calcium-dependent decoding in planta Plant Cell 36, 276-296, (2024) DOI: 10.1093/plcell/koad196

Changes in cytosolic calcium (Ca2+) concentration are among the earliest reactions to a multitude of stress cues. While a plethora of Ca2+-permeable channels may generate distinct Ca2+ signatures and contribute to response specificities, the mechanisms by which Ca2+ signatures are decoded are poorly understood. Here we developed a genetically encoded FRET (Förster resonance energy transfer)-based reporter that visualizes the conformational changes in Ca2+-dependent protein kinases (CDPKs/CPKs). We focused on two CDPKs with distinct Ca2+-sensitivities, highly Ca2+-sensitive Arabidopsis (Arabidopsis thaliana) AtCPK21 and rather Ca2+-insensitive AtCPK23, to report conformational changes accompanying kinase activation. In tobacco (Nicotiana tabacum) pollen tubes, which naturally display coordinated spatial and temporal Ca2+ fluctuations, CPK21-FRET, but not CPK23-FRET, reported oscillatory emission ratio changes mirroring cytosolic Ca2+ changes, pointing to the isoform-specific Ca2+-sensitivity and reversibility of the conformational change. In Arabidopsis guard cells, CPK21-FRET-monitored conformational dynamics suggest that CPK21 serves as a decoder of signal-specific Ca2+ signatures in response to abscisic acid and the flagellin peptide flg22. Based on these data, CDPK-FRET is a powerful approach for tackling real-time live-cell Ca2+ decoding in a multitude of plant developmental and stress responses.
IPB Mainnav Search