jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 21 to 24 of 24.

Publications

Kumar, A.; Gopalswamy, M.; Wishart, C.; Henze, M.; Eschen-Lippold, L.; Donnelly, D.; Balbach, J.; N-Terminal Phosphorylation of Parathyroid Hormone (PTH) Abolishes Its Receptor Activity ACS Chem. Biol. 9, 2465-2470, (2014) DOI: 10.1021/cb5004515

The parathyroid hormone (PTH) is an 84-residue peptide, which regulates the blood Ca2+ level via GPCR binding and subsequent activation of intracellular signaling cascades. PTH is posttranslationally phosphorylated in the parathyroid glands; however, the functional significance of this processes is not well characterized. In the present study, mass spectrometric analysis revealed three sites of phosphorylation, and NMR spectroscopy assigned Ser1, Ser3, and Ser17 as modified sites. These sites are located at the N-terminus of the hormone, which is important for receptor recognition and activation. NMR shows further that the three phosphate groups remotely disturb the α-helical propensity up to Ala36. An intracellular cAMP accumulation assay elucidated the biological significance of this phosphorylation because it ablated the PTH-mediated signaling. Our studies thus shed light on functional implications of phosphorylation at native PTH as an additional level of regulation.
Publications

Heymann, T.; Westphal, L.; Wessjohann, L.; Glomb, M. A.; Growing and Processing Conditions Lead to Changes in the Carotenoid Profile of Spinach J. Agr. Food Chem. 62, 4960-4967, (2014) DOI: 10.1021/jf501136g

This study aimed to evaluate the influence of different light regimens during spinach cultivation on the isomeric composition of β-carotene. Irradiation with a halogen lamp, which has a wavelength spectrum close to that of daylight, was used to mimic field-grown conditions. The additional use of optical filters was established as a model system for greenhouse cultivation. Field-grown model systems led to a preferential increase of 9-cis-β-carotene, whereas 13-cis-β-carotene was just formed at the beginning of irradiation. Additionally 9,13-di-cis-β-carotene decreased significantly in the presence of energy-rich light. Isomerization of β-carotene was strongly suppressed during irradiation in greenhouse-grown model systems and led to significant differences. These results were verified in biological samples. Authentic field-grown spinach (Spinacia oleracea L.) showed among changes of other isomers a significantly higher level of 9-cis-isomers (7.52 ± 0.14%) and a significantly lower level of 9,13-di-cis-isomers (0.25 ± 0.03%) compared to authentic greenhouse-grown spinach (6.49 ± 0.11 and 0.76 ± 0.05%). Almost all analyzed commercial spinach samples (fresh and frozen) were identified as common field-grown cultivation. Further investigations resulted in a clear differentiation of frozen commercial samples from fresh spinach, caused by significantly higher levels of 13-cis- and 15-cis-β-carotene as a result of industrial blanching processes.
Publications

Hawkins, N. J.; Cools, H. J.; Sierotzki, H.; Shaw, M. W.; Knogge, W.; Kelly, S. L.; Kelly, D. E.; Fraaije, B. A.; Paralog Re-Emergence: A Novel, Historically Contingent Mechanism in the Evolution of Antimicrobial Resistance Mol. Biol. Evol. 31, 1793-1802, (2014) DOI: 10.1093/molbev/msu134

Evolution of resistance to drugs and pesticides poses a serious threat to human health and agricultural production. CYP51 encodes the target site of azole fungicides, widely used clinically and in agriculture. Azole resistance can evolve due to point mutations or overexpression of CYP51, and previous studies have shown that fungicide-resistant alleles have arisen by de novo mutation. Paralogs CYP51A and CYP51B are found in filamentous ascomycetes, but CYP51A has been lost from multiple lineages. Here, we show that in the barley pathogen Rhynchosporium commune, re-emergence of CYP51A constitutes a novel mechanism for the evolution of resistance to azoles. Pyrosequencing analysis of historical barley leaf samples from a unique long-term experiment from 1892 to 2008 indicates that the majority of the R. commune population lacked CYP51A until 1985, after which the frequency of CYP51A rapidly increased. Functional analysis demonstrates that CYP51A retains the same substrate as CYP51B, but with different transcriptional regulation. Phylogenetic analyses show that the origin of CYP51A far predates azole use, and newly sequenced Rhynchosporium genomes show CYP51A persisting in the R. commune lineage rather than being regained by horizontal gene transfer; therefore, CYP51A re-emergence provides an example of adaptation to novel compounds by selection from standing genetic variation.
Books and chapters

Eschen-Lippold, L.; Bauer, N.; Löhr, J.; Palm-Forster, M. A. T.; Lee, J.; Rapid Mutagenesis-Based Analysis of Phosphorylation Sites in Mitogen-Activated Protein Kinase Substrates (Komis, G. & Šamaj, J., eds.). Methods Mol. Biol. 1171, 183-192, (2014) ISBN: 978-1-4939-0922-3 DOI: 10.1007/978-1-4939-0922-3_15

In eukaryotes, mitogen-activated protein kinases (MAPKs) are one of the best studied pathways for posttranslational modification-mediated regulation of protein functions. Here, we describe a rapid in vitro method to screen potential protein phosphorylation sites targeted by MAPKs. The method is based on PCR-mediated mutagenesis together with a type IIs restriction digest. Screening for the successfully mutated clones is further facilitated through introduction of a second diagnostic restriction site. Besides time-saving, this reduces the cost for sequencing confirmation of the positive clones, which are used for subsequent recombinant protein production and kinase assay validation.
IPB Mainnav Search