jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Displaying results 1 to 9 of 9.

Publications

Scheel, D.; Parasitismus im Pflanzenreich Nova Acta Leopoldina 316, 25-31, (2000)

0
Publications

Noehringer, C.; Scheel, D.; Blée, E.; Lipoxygenase isoforms in elicitor-treated parsley cell suspension cultures Biochem. Soc. Trans. 28, 827-829, (2000) DOI: 10.1042/bst0280827

Treatment of parsley cell cultures with a fungal elicitor triggered the induction of a lipoxygenase isoform which may be involved in the de novo synthesis of defence-response inducers, such as jasmonic acid or 12-oxo-phytodienoic acid.
Publications

Hornung, E.; Rosahl, S.; Kühn, H.; Feussner, I.; Creating lipoxygenases with new positional specificities by site-directed mutagenesis Biochem. Soc. Trans. 28, 825-826, (2000) DOI: 10.1042/bst0280825

In order to analyse the amino acid determinants which alter the positional specificity of plant lipoxygenases (LOXs), multiple LOX sequence alignments and structural modelling of the enzyme-substrate interactions were carried out. These alignments suggested three amino acid residues as the primary determinants of positional specificity. Here we show the generation of two plant LOXs with new positional specificities, a Δ-linoleneate 6-LOX and an arachidonate 11-LOX, by altering only one of these determinants within the active site of two plant LOXs. In the past, site-directed-mutagenesis studies have mainly been carried out with mammalian lipoxygenases (LOXs) [1]. In these experiments two regions have been identified in the primary structure containing sequence determinants for positional specificity. Amino acids aligning with the Sloane determinants [2] are highly conserved among plant LOXs. In contrast, there is amino acid hetero-geneity among plant LOXs at the position that aligns with P353 of the rabbit reticulocyte 15-LOX (Borngräber determinants) [3].
Publications

Blume, B.; Nürnberger, T.; Nass, N.; Scheel, D.; Receptor-Mediated Increase in Cytoplasmic Free Calcium Required for Activation of Pathogen Defense in Parsley Plant Cell 12, 1425-1440, (2000) DOI: 10.1105/tpc.12.8.1425

Transient influx of Ca2+ constitutes an early element of signaling cascades triggering pathogen defense responses in plant cells. Treatment with the Phytophthora sojae–derived oligopeptide elicitor, Pep-13, of parsley cells stably expressing apoaequorin revealed a rapid increase in cytoplasmic free calcium ([Ca2+]cyt), which peaked at ∼1 μM and subsequently declined to sustained values of 300 nM. Activation of this biphasic [Ca2+]cyt signature was achieved by elicitor concentrations sufficient to stimulate Ca2+ influx across the plasma membrane, oxidative burst, and phytoalexin production. Sustained concentrations of [Ca2+]cyt but not the rapidly induced [Ca2+]cyt transient peak are required for activation of defense-associated responses. Modulation by pharmacological effectors of Ca2+ influx across the plasma membrane or of Ca2+ release from internal stores suggests that the elicitor-induced sustained increase of [Ca2+]cyt predominantly results from the influx of extracellular Ca2+. Identical structural features of Pep-13 were found to be essential for receptor binding, increases in [Ca2+]cyt, and activation of defense-associated responses. Thus, a receptor-mediated increase in [Ca2+]cyt is causally involved in signaling the activation of pathogen defense in parsley.
Publications

Abel, S.; Nürnberger, T.; Ahnert, V.; Krauss, G.-J.; Glund, K.; Induction of an Extracellular Cyclic Nucleotide Phosphodiesterase as an Accessory Ribonucleolytic Activity during Phosphate Starvation of Cultured Tomato Cells Plant Physiol. 122, 543-552, (2000) DOI: 10.1104/pp.122.2.543

During growth under conditions of phosphate limitation, suspension-cultured cells of tomato (Lycopersicon esculentum Mill.) secrete phosphodiesterase activity in a similar fashion to phosphate starvation-inducible ribonuclease (RNase LE), a cyclizing endoribonuclease that generates 2′:3′-cyclic nucleoside monophosphates (NMP) as its major monomeric products (T. Nürnberger, S. Abel, W. Jost, K. Glund [1990] Plant Physiol 92: 970–976). Tomato extracellular phosphodiesterase was purified to homogeneity from the spent culture medium of phosphate-starved cells and was characterized as a cyclic nucleotide phosphodiesterase. The purified enzyme has a molecular mass of 70 kD, a pH optimum of 6.2, and an isoelectric point of 8.1. The phosphodiesterase preparation is free of any detectable deoxyribonuclease, ribonuclease, and nucleotidase activity. Tomato extracellular phosphodiesterase is insensitive to EDTA and hydrolyzes with no apparent base specificity 2′:3′-cyclic NMP to 3′-NMP and the 3′:5′-cyclic isomers to a mixture of 3′-NMP and 5′-NMP. Specific activities of the enzyme are 2-fold higher for 2′:3′-cyclic NMP than for 3′:5′-cyclic isomers. Analysis of monomeric products of sequential RNA hydrolysis with purified RNase LE, purified extracellular phosphodiesterase, and cleared −Pi culture medium as a source of 3′-nucleotidase activity indicates that cyclic nucleotide phosphodiesterase functions as an accessory ribonucleolytic activity that effectively hydrolyzes primary products of RNase LE to substrates for phosphate-starvation-inducible phosphomonoesterases. Biosynthetical labeling of cyclic nucleotide phopshodiesterase upon phosphate starvation suggests de novo synthesis and secretion of a set of nucleolytic enzymes for scavenging phosphate from extracellular RNA substrates.
Books and chapters

Scheel, D.; Blume, B.; Brunner, F.; Fellbrich, G.; Dalbøge, H.; Hirt, H.; Kauppinen, S.; Kroj, T.; Ligterink, W.; Nürnberger, T.; Tschöpe, M.; Zinecker, H.; zur Nieden, U.; Receptor-mediated signal transduction in plant defense 131-135, (2000)

0
Books and chapters

Hirt, H.; Scheel, D.; Receptor-Mediated MAP Kinase Activation in Plant Defense Results and Problems in Cell Differentiation 27, 85-93, (2000) ISBN: 978-3-540-49166-8 DOI: 10.1007/978-3-540-49166-8_7

Plants mount a complex array of defense reactions in response to attack by pathogens. Initiation of these events depends on perception and signal transduction of elicitors, which are plant-derived or pathogenderived signals, that give rise to transcriptional activation of defense-related genes as well as to changes in activities of enzymes involved in cell wall reinforcement and oxygen radical formation. An oligopeptide, identified within a 42 kDa glycoprotein elicitor from Phythophthora sojae, activates in parsley cells typical plant defense reactions, enabling researchers to study plant-pathogen interaction at the single cell level. The oligopeptide elicitor was found to be necessary and sufficient to stimulate a complex defense response in parsley cells, comprising H+/Ca2+ influxes, K+/Cl- effluxes, activation of a mitogen-activated protein (MAP) kinase, an oxidative burst, defense-related gene activation, and phytoalexin formation.
Books and chapters

Bruns, I.; Sutter, K.; Neumann, D.; Krauss, G.-J.; Glutathione accumulation - a specific response of mosses to heavy metal stress 389-391, (2000)

0
Publications

Nürnberger, T.; Nennstiel, D.; Jabs, T.; Sacks, W. R.; Hahlbrock, K.; Scheel, D.; High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses Cell 78, 449-460, (1994) DOI: 10.1016/0092-8674(94)90423-5

An oligopeptide of 13 amino acids (Pep-13) identified within a 42 kDa glycoprotein elicitor from P. megasperma was shown to be necessary and sufficient to stimulate a complex defense response in parsley cells comprising H+/Ca2+ influxes, K+/Cl− effluxes, an oxidative burst, defense-related gene activation, and phytoalexin formation. Binding of radiolabeled Pep-13 to parsley microsomes and protoplasts was specific, reversible, and saturable. Identical structural features of Pep-13 were found to be responsible for specific binding and initiation of all plant responses analyzed. The high affinity binding site recognizing the peptide ligand (KD = 2.4 nM) may therefore represent a novel class of receptors in plants, and the rapidly induced ion fluxes may constitute elements of the signal transduction cascade triggering pathogen defense in plants.
IPB Mainnav Search