jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 2 of 2.

Publications

Weber, M.; Trampczynska, A.; Clemens, S.; Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri Plant Cell Environ. 29, 950-963, (2006) DOI: 10.1111/j.1365-3040.2005.01479.x

Toxic effects of both essential and non‐essential heavy metals are well documented in plants. Very little is known, however, about their modes of toxicity, about tolerance mechanisms and the signalling cascades involved in mediating transcriptional responses to toxic metal excess. We analysed transcriptome changes upon Cd2+ and Cu2+ exposure in roots of Arabidopsis thaliana and the Cd2+‐hypertolerant metallophyte Arabidopsis halleri . Particularly, three categories of genes were identified with the help of this comparative approach: (1) common responses, which might indicate stable and functionally relevant changes conserved across plant species; (2) metallophyte‐specific responses as well as transcripts differentially regulated between the two species, representing candidate genes for Cd2+ hypertolerance; and (3) those specifically responsive to Cd2+ and therefore indicative of toxicity mechanisms or potentially involved in signalling cascades. Our data define, for instance, Arabidopsis core responses to Cd2+ and Cu2+. In addition, they suggest that Cd2+ exposure very rapidly results in apparent Zn deficiency, and they show the existence of highly specific Cd2+ responses and distinct signalling cascades. Array results were independently confirmed by real‐time quantitative PCR, thereby further validating cross‐species transcriptome analysis with oligonucleotide microarrays.
Publications

Weber, M.; Harada, E.; Vess, C.; Roepenack-Lahaye, E. v.; Clemens, S.; Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors Plant J. 37, 269-281, (2004) DOI: 10.1046/j.1365-313x.2003.01960.x

The hyperaccumulation of zinc (Zn) and cadmium (Cd) is a constitutive property of the metallophyte Arabidopsis halleri . We therefore used Arabidopsis GeneChips to identify genes more active in roots of A. halleri as compared to A. thaliana under control conditions. The two genes showing highest expression in A. halleri roots relative to A. thaliana roots out of more than 8000 genes present on the chip encode a nicotianamine (NA) synthase and a putative Zn2+ uptake system. The significantly higher activity of these and other genes involved in metal homeostasis under various growth conditions was confirmed by Northern and RT‐PCR analyses. A. halleri roots also show higher NA synthase protein levels. Furthermore, we developed a capillary liquid chromatography electrospray ionization quadrupole time‐of‐flight mass spectrometry (CapLC‐ESI‐QTOF‐MS)‐based NA analysis procedure and consistently found higher NA levels in roots of A. halleri . Expression of a NA synthase in Zn2+‐hypersensitive Schizosaccharomyces pombe cells demonstrated that formation of NA can confer Zn2+ tolerance. Taken together, these observations implicate NA in plant Zn homeostasis and NA synthase in the hyperaccumulation of Zn by A. halleri . Furthermore, the results show that comparative microarray analysis of closely related species can be a valuable tool for the elucidation of phenotypic differences between such species.
IPB Mainnav Search