jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: sort ascending Year Type of publication

Displaying results 1 to 5 of 5.


Rasche, F.; Svatoš, A.; Maddula, R. K.; Böttcher, C.; Böcker, S. Computing Fragmentation Trees from Tandem Mass Spectrometry Data Anal Chem 83, 1243-1251, (2011) DOI: 10.1021/ac101825k

The structural elucidation of organic compounds in complex biofluids and tissues remains a significant analytical challenge. For mass spectrometry, the manual interpretation of collision-induced dissociation (CID) mass spectra is cumbersome and requires expert knowledge, as the fragmentation mechanisms of ions formed from small molecules are not completely understood. The automated identification of compounds is generally limited to searching in spectral libraries. Here, we present a method for interpreting the CID spectra of the organic compound’s protonated ions by computing fragmentation trees that establish not only the molecular formula of the compound and all fragment ions but also the dependencies between fragment ions. This is an important step toward the automated identification of unknowns from the CID spectra of compounds that are not in any database.
Books and chapters

Hummel, J.; Strehmel, N.; Bölling, C.; Schmidt, S.; Walther D.; Kopka, J. Mass spectral search and analysis using the Golm metabolome. (Weckwerth, W.; Kahl, G.). 321-343, (2013) ISBN: 978-3-527-32777-5 DOI: 10.1002/9783527669882.ch18

The novel “omics” technologies of the postgenomic era generate large multiplexed phenotyping datasets, which can only inadequately be published in the traditional journal and supplemental formats. For this reason, public databases have been developed that utilize the efficient communication of knowledge through the World Wide Web. This trend also applies to the metabolomics field, which is, after genomics, transcriptomics, and proteomics, the fourth major systems-level phenotyping platform. Each different analytical technology used in metabolomics studies requires specific reference data for metabolite identification and optimal data formats for reporting the complex metabolite profiling data features. Therefore, we envision that every technology platform or even each high-throughput metabolomic laboratory will establish dedicated databases, which will communicate between each other and will be integrated by meta-databases and web services. The Golm Metabolome Database (GMD) (http://gmd.mpimp-golm.mpg.de/) is a metabolomic database, maintained by the Max Planck Institute of Molecular Plant Physiology, that was initiated around a nucleus of reference data from gas chromatography–mass spectrometry metabolite profiling data and is now developing toward a general mass spectrometry-based repository of reference metabolite profiles for essential plant tissues and typical variations of growth conditions. This chapter describes the mass spectral searches and analyses currently supported by the GMD. We specifically address the searches for the different chemical entities within GMD, namely the metabolites, reference substances, and the chemically derivatized analytes. We report the diverse options for mass spectral analyses and highlight the decision tree-supported prediction of chemical substructures, a feature of GMD that currently appears to be a unique among the many tools for the analysis of gas chromatography–electron ionization mass spectra.

Herz, K.; Dietz, S.; Haider, S.; Jandt, U.; Scheel, D.; Bruelheide, H. Predicting individual plant performance in grasslands. Ecol Evol 7, 8958-8965, (2017) DOI: 10.1002/ece3.3393

Plant functional traits are widely used to predict community productivity. However, they are rarely used to predict individual plant performance in grasslands. To assess the relative importance of traits compared to environment, we planted seedlings of 20 common grassland species as phytometers into existing grassland communities varying in land-use intensity. After 1 year, we dug out the plants and assessed root, leaf, and aboveground biomass, to measure plant performance. Furthermore, we determined the functional traits of the phytometers and of all plants growing in their local neighborhood. Neighborhood impacts were analyzed by calculating community-weighted means (CWM) and functional diversity (FD) of every measured trait. We used model selection to identify the most important predictors of individual plant performance, which included phytometer traits, environmental conditions (climate, soil conditions, and land-use intensity), as well as CWM and FD of the local neighborhood. Using variance partitioning, we found that most variation in individual plant performance was explained by the traits of the individual phytometer plant, ranging between 19.30% and 44.73% for leaf and aboveground dry mass, respectively. Similarly, in a linear mixed effects model across all species, performance was best predicted by phytometer traits. Among all environmental variables, only including land-use intensity improved model quality. The models were also improved by functional characteristics of the local neighborhood, such as CWM of leaf dry matter content, root calcium concentration, and root mass per volume as well as FD of leaf potassium and root magnesium concentration and shoot dry matter content. However, their relative effect sizes were much lower than those of the phytometer traits. Our study clearly showed that under realistic field conditions, the performance of an individual plant can be predicted satisfyingly by its functional traits, presumably because traits also capture most of environmental and neighborhood conditions.

Peters, K.; Gorzolka, K.; Bruelheide, H.; Neumann, S. Seasonal variation of secondary metabolites in nine different bryophytes Ecol Evol 8, 9105-9117, (2018) DOI: 10.1002/ece3.4361

Bryophytes occur in almost all land ecosystems and contribute to global biogeochemical cycles, ecosystem functioning, and influence vegetation dynamics. As growth and biochemistry of bryophytes are strongly dependent on the season, we analyzed metabolic variation across seasons with regard to ecological characteristics and phylogeny. Using bioinformatics methods, we present an integrative and reproducible approach to connect ecology with biochemistry. Nine different bryophyte species were collected in three composite samples in four seasons. Untargeted liquid chromatography coupled with mass spectrometry (LC/MS) was performed to obtain metabolite profiles. Redundancy analysis, Pearson's correlation, Shannon diversity, and hierarchical clustering were used to determine relationships among species, seasons, ecological characteristics, and hierarchical clustering. Metabolite profiles of Marchantia polymorpha and Fissidens taxifolius which are species with ruderal life strategy (R‐selected) showed low seasonal variability, while the profiles of the pleurocarpous mosses and Grimmia pulvinata which have characteristics of a competitive strategy (C‐selected) were more variable. Polytrichum strictum and Plagiomnium undulatum had intermediary life strategies. Our study revealed strong species‐specific differences in metabolite profiles between the seasons. Life strategies, growth forms, and indicator values for light and soil were among the most important ecological predictors. We demonstrate that untargeted Eco‐Metabolomics provide useful biochemical insight that improves our understanding of fundamental ecological strategies.

Dietz, S.; Herz, K.; Döll, S.; Haider, S.; Jandt, U.; Bruelheide, H.; Scheel, D. Semi‐polar root exudates in natural grassland communities Ecol Evol 9, 5526-5541, (2019) DOI: 10.1002/ece3.5043

In the rhizosphere, plants are exposed to a multitude of different biotic and abiotic factors, to which they respond by exuding a wide range of secondary root metabolites. So far, it has been unknown to which degree root exudate composition is species‐specific and is affected by land use, the local impact and local neighborhood under field conditions. In this study, root exudates of 10 common grassland species were analyzed, each five of forbs and grasses, in the German Biodiversity Exploratories using a combined phytometer and untargeted liquid chromatography‐mass spectrometry (LC‐MS) approach. Redundancy analysis and hierarchical clustering revealed a large set of semi‐polar metabolites common to all species in addition to species‐specific metabolites. Chemical richness and exudate composition revealed that forbs, such as Plantago lanceolata and Galium species, exuded more species‐specific metabolites than grasses. Grasses instead were primarily affected by environmental conditions. In both forbs and grasses, plant functional traits had only a minor impact on plant root exudation patterns. Overall, our results demonstrate the feasibility of obtaining and untargeted profiling of semi‐polar metabolites under field condition and allow a deeper view in the exudation of plants in a natural grassland community.
IPB Mainnav Search