jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 6 of 6.

Publications

Trempel, F.; Eschen‐Lippold, L.; Bauer, N.; Ranf, S.; Westphal, L.; Scheel, D.; Lee, J.; A mutation in Asparagine‐Linked Glycosylation 12 (ALG12) leads to receptor misglycosylation and attenuated responses to multiple microbial elicitors FEBS Lett. 594, 2440-2451, (2020) DOI: 10.1002/1873-3468.13850

Changes in cellular calcium levels are one of the earliest signalling events in plants exposed to pathogens or other exogenous factors. In a genetic screen, we identified an Arabidopsis thaliana ‘changed calcium elevation 1 ’ (cce1 ) mutant with attenuated calcium response to the bacterial flagellin flg22 peptide and several other elicitors. Whole genome re‐sequencing revealed a mutation in ALG12 (Asparagine‐Linked Glycosylation 12 ) that encodes the mannosyltransferase responsible for adding the eighth mannose residue in an α‐1,6 linkage to the dolichol‐PP‐oligosaccharide N ‐glycosylation glycan tree precursors. While properly targeted to the plasma membrane, misglycosylation of several receptors in the cce1 background suggests that N ‐glycosylation is required for proper functioning of client proteins.
Publications

Trampczynska, A.; Böttcher, C.; Clemens, S.; The transition metal chelator nicotianamine is synthesized by filamentous fungi FEBS Lett. 580, 3173-3178, (2006) DOI: 10.1016/j.febslet.2006.04.073

Nicotianamine is an important metal ligand in plants. Surprisingly, recent genome sequencing revealed that ascomycetes encode proteins with similarity to plant nicotianamine synthases (NAS). By expression in a Zn2+‐hypersensitive fission yeast mutant we show for a protein from Neurospora crassa that it indeed possesses NAS activity. Using electrospray‐ionization‐quadrupole‐time‐of‐flight mass spectrometry we prove the formation of nicotianamine in N. crassa . Transcript level is strongly upregulated under Zn deficiency as shown by real‐time PCR. These findings demonstrate that nicotianamine is more widespread in nature than anticipated and provide further evidence for a function of nicotianamine as a cytosolic chelator of Zn2+ ions.
Publications

Grzam, A.; Tennstedt, P.; Clemens, S.; Hell, R.; Meyer, A. J.; Vacuolar sequestration of glutathione S-conjugates outcompetes a possible degradation of the glutathione moiety by phytochelatin synthase FEBS Lett. 580, 6384-6390, (2006) DOI: 10.1016/j.febslet.2006.10.050

Monochlorobimane was used as a model xenobiotic for Arabidopsis to directly monitor the compartmentation of glutathione‐bimane conjugates in situ and to quantify degradation intermediates in vitro. Vacuolar sequestration of the conjugate was very fast and outcompeted carboxypeptidation to the γ‐glutamylcysteine‐bimane intermediate (γ‐EC‐B) by phytochelatin synthase (PCS) in the cytosol. Following vacuolar sequestration, degradation proceeded to cysteine‐bimane without intermediate. Only co‐infiltration of monochlorobimane with Cd2+ and Cu2+ increased γ‐EC‐B formation to 4% and 25%, respectively, within 60 min. The role of PCS under simultaneous heavy metal stress was confirmed by investigation of different pcs1 null‐mutants. In the absence of elevated heavy metal concentrations glutathione‐conjugates are therefore first sequestered to the vacuole and subsequently degraded with the initial breakdown step being rate‐limiting.
Publications

Stumpe, M.; Kandzia, R.; Göbel, C.; Rosahl, S.; Feussner, I.; A pathogen-inducible divinyl ether synthase (CYP74D) from elicitor-treated potato suspension cells FEBS Lett. 507, 371-376, (2001) DOI: 10.1016/S0014-5793(01)03019-8

In elicitor-treated potato cells, 9-lipoxygenase-derived oxylipins accumulate with the divinyl ether colneleic acid as the major metabolite. Here, the identification of a potato cDNA is described, whose predicted amino acid sequence corresponds to divinyl ether synthases, belonging to the recently identified new P450 subfamily CYP74D. The recombinant protein was expressed in Escherichia coli and shown to metabolize 9-hydroperoxy linoleic acid to colneleic acid at pH 6.5. This fatty acid derivative has been implicated in functioning as a plant antimicrobial compound. RNA blot analyses revealed accumulation of divinyl ether synthase transcripts both upon infiltration of potato leaves with Pseudomonas syringae and after infection with Phytophthora infestans.
Publications

Cazalé, A.-C.; Clemens, S.; Arabidopsis thaliana expresses a second functional phytochelatin synthase FEBS Lett. 507, 215-219, (2001) DOI: 10.1016/S0014-5793(01)02976-3

Phytochelatins represent a major detoxifying pathway for heavy metals in plants and many other organisms. The Arabidopsis thaliana CAD1 (=AtPCS1 ) gene encodes a phytochelatin synthase and cad1 mutants are phytochelatin deficient and cadmium hypersensitive. The Arabidopsis genome contains a highly homologous gene, AtPCS2 , of which expression and function were studied in order to understand the apparent non‐redundancy of the two genes. Low constitutive AtPCS2 expression is detected in all plant organs analyzed. The AtPCS2 gene encodes a functional phytochelatin synthase as shown by expression in Saccharomyces cerevisiae and the complementation of a Schizosaccharomyces pombe phytochelatin synthase knockout strain.
Publications

Nennstiel, D.; Scheel, D.; Nürnberger, T.; Characterization and partial purification of an oligopeptide elicitor receptor from parsley (Petroselinum crispum) FEBS Lett. 431, 405-410, (1998) DOI: 10.1016/S0014-5793(98)00800-X

Parsley cells recognize the fungal phytopathogen Phytophthora sojae through a plasma membrane receptor. A 13 amino acid oligopeptide fragment (Pep-13) of a 42 kDa fungal cell wall glycoprotein was shown to bind to the receptor and stimulate a complex defense response in cultured parsley cells. The Pep-13 binding site solubilized from parsley microsomal membranes by non-ionic detergents exhibited the same ligand affinity and ligand specificity as the membrane-bound receptor. Chemical crosslinking and photoaffinity labeling assays with [125I]Pep-13 revealed that a monomeric 100 kDa integral plasma membrane protein is sufficient for ligand binding and may thus constitute the ligand binding domain of the receptor. Ligand affinity chromatography of solubilized microsomal membrane protein on immobilized Pep-13 yielded a 5000-fold enrichment of specific receptor activity.
IPB Mainnav Search