jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 4 of 4.

Publications

Avrova, A.; Knogge, W. Rhynchosporium commune: a persistent threat to barley cultivation Mol Plant Pathol 13, 986-997, (2012) DOI: 10.1111/j.1364-3703.2012.00811.x

Rhynchosporium commune is a haploid fungus causing scald or leaf blotch on barley, other Hordeum spp. and Bromus diandrus.TaxonomyRhynchosporium commune is an anamorphic Ascomycete closely related to the teleomorph Helotiales genera Oculimacula and Pyrenopeziza.Disease symptomsRhynchosporium commune causes scald‐like lesions on leaves, leaf sheaths and ears. Early symptoms are generally pale grey oval lesions. With time, the lesions acquire a dark brown margin with the centre of the lesion remaining pale green or pale brown. Lesions often merge to form large areas around which leaf yellowing is common. Infection frequently occurs in the leaf axil, which can lead to chlorosis and eventual death of the leaf.Life cycleRhynchosporium commune is seed borne, but the importance of this phase of the disease is not fully understood. Debris from previous crops and volunteers, infected from the stubble from previous crops, are considered to be the most important sources of the disease. Autumn‐sown crops can become infected very soon after sowing. Secondary spread of disease occurs mainly through splash dispersal of conidia from infected leaves. Rainfall at the stem extension growth stage is the major environmental factor in epidemic development.Detection and quantificationRhynchosporium commune produces unique beak‐shaped, one‐septate spores both on leaves and in culture. The development of a specific polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) has allowed the identification of asymptomatic infection in seeds and during the growing season.Disease controlThe main measure for the control of R. commune is the use of fungicides with different modes of action, in combination with the use of resistant cultivars. However, this is constantly under review because of the ability of the pathogen to adapt to host plant resistance and to develop fungicide resistance.
Publications

Rasche, F.; Svatoš, A.; Maddula, R. K.; Böttcher, C.; Böcker, S. Computing Fragmentation Trees from Tandem Mass Spectrometry Data Anal Chem 83, 1243-1251, (2011) DOI: 10.1021/ac101825k

The structural elucidation of organic compounds in complex biofluids and tissues remains a significant analytical challenge. For mass spectrometry, the manual interpretation of collision-induced dissociation (CID) mass spectra is cumbersome and requires expert knowledge, as the fragmentation mechanisms of ions formed from small molecules are not completely understood. The automated identification of compounds is generally limited to searching in spectral libraries. Here, we present a method for interpreting the CID spectra of the organic compound’s protonated ions by computing fragmentation trees that establish not only the molecular formula of the compound and all fragment ions but also the dependencies between fragment ions. This is an important step toward the automated identification of unknowns from the CID spectra of compounds that are not in any database.
Publications

Haapalainen, M.; Engelhardt, S.; Küfner, I.; Li, C.-M.; Nürnberger, T.; Lee, J.; Romantschuk, M.; Taira, S. Functional mapping of harpin HrpZ of Pseudomonas syringae reveals the sites responsible for protein oligomerization, lipid interactions and plant defence induction Mol Plant Pathol 12, 151-166, (2011) DOI: 10.1111/j.1364-3703.2010.00655.x

Harpin HrpZ is one of the most abundant proteins secreted through the pathogenesis-associated type III secretion system of the plant pathogen Pseudomonas syringae. HrpZ shows membrane-binding and pore-forming activities in vitro, suggesting that it could be targeted to the host cell plasma membrane. We studied the native molecular forms of HrpZ and found that it forms dimers and higher order oligomers. Lipid binding by HrpZ was tested with 15 different membrane lipids, with HrpZ interacting only with phosphatidic acid. Pore formation by HrpZ in artificial lipid vesicles was found to be dependent on the presence of phosphatidic acid. In addition, HrpZ was able to form pores in vesicles prepared from Arabidopsis thaliana plasma membrane, providing evidence for the suggested target of HrpZ in the host. To map the functions associated with HrpZ, we constructed a comprehensive series of deletions in the hrpZ gene derived from P. syringae pv. phaseolicola, and studied the mutant proteins. We found that oligomerization is mainly mediated by a region near the C-terminus of the protein, and that the same region is also essential for membrane pore formation. Phosphatidic acid binding seems to be mediated by two regions separate in the primary structure. Tobacco, a nonhost plant, recognizes, as a defence elicitor, a 24-amino-acid HrpZ fragment which resides in the region indispensable for the oligomerization and pore formation functions of HrpZ.
Publications

Brunner, F.; Rosahl, S.; Lee, J.; Rudd, J.J.; Geiler, C.; Kauppinen, S.; Rasmussen, G.; Scheel, D.; Nürnberger, T. Pep-13, a plant defense-inducing pathogen-associated pattern from <em>Phytophthora transglutaminases</em> EMBO J 21, 6681-6688, (2002)

Innate immunity, an ancient form of defense against microbial infection, is well described for animals and is also suggested to be important for plants. Discrimination from self is achieved through receptors that recognize pathogen-associated molecular patterns (PAMPs) not found in the host. PAMPs are evolutionarily conserved structures which are functionally important and, thus, not subject to frequent mutation. Here we report that the previously described peptide elicitor of defense responses in parsley, Pep-13, constitutes a surface-exposed fragment within a novel calcium-dependent cell wall transglutaminase (TGase) from Phytophthora sojae. TGase transcripts and TGase activity are detectable in all Phytophthora species analyzed, among which are some of the most destructive plant pathogens. Mutational analysis within Pep-13 identified the same amino acids indispensable for both TGase and defense-eliciting activity. Pep-13, conserved among Phytophthora TGases, activates defense in parsley and potato, suggesting its function as a genus-specific recognition determinant for the activation of plant defense in host and non-host plants. In summary, plants may recognize PAMPs with characteristics resembling those known to trigger innate immune responses in animals.
IPB Mainnav Search