jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 2 of 2.

Books and chapters

Hummel, J.; Strehmel, N.; Bölling, C.; Schmidt, S.; Walther D.; Kopka, J. Mass spectral search and analysis using the Golm metabolome. (Weckwerth, W.; Kahl, G.). 321-343, (2013) ISBN: 978-3-527-32777-5 DOI: 10.1002/9783527669882.ch18

The novel “omics” technologies of the postgenomic era generate large multiplexed phenotyping datasets, which can only inadequately be published in the traditional journal and supplemental formats. For this reason, public databases have been developed that utilize the efficient communication of knowledge through the World Wide Web. This trend also applies to the metabolomics field, which is, after genomics, transcriptomics, and proteomics, the fourth major systems-level phenotyping platform. Each different analytical technology used in metabolomics studies requires specific reference data for metabolite identification and optimal data formats for reporting the complex metabolite profiling data features. Therefore, we envision that every technology platform or even each high-throughput metabolomic laboratory will establish dedicated databases, which will communicate between each other and will be integrated by meta-databases and web services. The Golm Metabolome Database (GMD) (http://gmd.mpimp-golm.mpg.de/) is a metabolomic database, maintained by the Max Planck Institute of Molecular Plant Physiology, that was initiated around a nucleus of reference data from gas chromatography–mass spectrometry metabolite profiling data and is now developing toward a general mass spectrometry-based repository of reference metabolite profiles for essential plant tissues and typical variations of growth conditions. This chapter describes the mass spectral searches and analyses currently supported by the GMD. We specifically address the searches for the different chemical entities within GMD, namely the metabolites, reference substances, and the chemically derivatized analytes. We report the diverse options for mass spectral analyses and highlight the decision tree-supported prediction of chemical substructures, a feature of GMD that currently appears to be a unique among the many tools for the analysis of gas chromatography–electron ionization mass spectra.

Brunner, F.; Rosahl, S.; Lee, J.; Rudd, J.J.; Geiler, C.; Kauppinen, S.; Rasmussen, G.; Scheel, D.; Nürnberger, T. Pep-13, a plant defense-inducing pathogen-associated pattern from <em>Phytophthora transglutaminases</em> EMBO J 21, 6681-6688, (2002)

Innate immunity, an ancient form of defense against microbial infection, is well described for animals and is also suggested to be important for plants. Discrimination from self is achieved through receptors that recognize pathogen-associated molecular patterns (PAMPs) not found in the host. PAMPs are evolutionarily conserved structures which are functionally important and, thus, not subject to frequent mutation. Here we report that the previously described peptide elicitor of defense responses in parsley, Pep-13, constitutes a surface-exposed fragment within a novel calcium-dependent cell wall transglutaminase (TGase) from Phytophthora sojae. TGase transcripts and TGase activity are detectable in all Phytophthora species analyzed, among which are some of the most destructive plant pathogens. Mutational analysis within Pep-13 identified the same amino acids indispensable for both TGase and defense-eliciting activity. Pep-13, conserved among Phytophthora TGases, activates defense in parsley and potato, suggesting its function as a genus-specific recognition determinant for the activation of plant defense in host and non-host plants. In summary, plants may recognize PAMPs with characteristics resembling those known to trigger innate immune responses in animals.
IPB Mainnav Search