jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 6 of 6.

Printed publications

Trempel, F.; Eschen‐Lippold, L.; Bauer, N.; Ranf, S.; Westphal, L.; Scheel, D.; Lee, J. A mutation in Asparagine‐Linked Glycosylation 12 (ALG12) leads to receptor misglycosylation and attenuated responses to multiple microbial elicitors FEBS Lett (2020) DOI: 10.1002/1873-3468.13850

Changes in cellular calcium levels are one of the earliest signalling events in plants exposed to pathogens or other exogenous factors. In a genetic screen, we identified an Arabidopsis thaliana ‘changed calcium elevation 1 ’ (cce1 ) mutant with attenuated calcium response to the bacterial flagellin flg22 peptide and several other elicitors. Whole genome re‐sequencing revealed a mutation in ALG12 (Asparagine‐Linked Glycosylation 12 ) that encodes the mannosyltransferase responsible for adding the eighth mannose residue in an α‐1,6 linkage to the dolichol‐PP‐oligosaccharide N ‐glycosylation glycan tree precursors. While properly targeted to the plasma membrane, misglycosylation of several receptors in the cce1 background suggests that N ‐glycosylation is required for proper functioning of client proteins.

Kumar, A.; Gopalswamy, M.; Wishart, C.; Henze, M.; Eschen-Lippold, L.; Donnelly, D.; Balbach, J. N-Terminal Phosphorylation of Parathyroid Hormone (PTH) Abolishes Its Receptor Activity ACS Chem Biol 9, 2465–2470, (2014) DOI: 10.1021/cb5004515

The parathyroid hormone (PTH) is an 84-residue peptide, which regulates the blood Ca2+ level via GPCR binding and subsequent activation of intracellular signaling cascades. PTH is posttranslationally phosphorylated in the parathyroid glands; however, the functional significance of this processes is not well characterized. In the present study, mass spectrometric analysis revealed three sites of phosphorylation, and NMR spectroscopy assigned Ser1, Ser3, and Ser17 as modified sites. These sites are located at the N-terminus of the hormone, which is important for receptor recognition and activation. NMR shows further that the three phosphate groups remotely disturb the α-helical propensity up to Ala36. An intracellular cAMP accumulation assay elucidated the biological significance of this phosphorylation because it ablated the PTH-mediated signaling. Our studies thus shed light on functional implications of phosphorylation at native PTH as an additional level of regulation 
Books and chapters

Hummel, J.; Strehmel, N.; Bölling, C.; Schmidt, S.; Walther D.; Kopka, J. Mass spectral search and analysis using the Golm metabolome. (Weckwerth, W.; Kahl, G.). 321-343, (2013) ISBN: 978-3-527-32777-5 DOI: 10.1002/9783527669882.ch18

The novel “omics” technologies of the postgenomic era generate large multiplexed phenotyping datasets, which can only inadequately be published in the traditional journal and supplemental formats. For this reason, public databases have been developed that utilize the efficient communication of knowledge through the World Wide Web. This trend also applies to the metabolomics field, which is, after genomics, transcriptomics, and proteomics, the fourth major systems-level phenotyping platform. Each different analytical technology used in metabolomics studies requires specific reference data for metabolite identification and optimal data formats for reporting the complex metabolite profiling data features. Therefore, we envision that every technology platform or even each high-throughput metabolomic laboratory will establish dedicated databases, which will communicate between each other and will be integrated by meta-databases and web services. The Golm Metabolome Database (GMD) (http://gmd.mpimp-golm.mpg.de/) is a metabolomic database, maintained by the Max Planck Institute of Molecular Plant Physiology, that was initiated around a nucleus of reference data from gas chromatography–mass spectrometry metabolite profiling data and is now developing toward a general mass spectrometry-based repository of reference metabolite profiles for essential plant tissues and typical variations of growth conditions. This chapter describes the mass spectral searches and analyses currently supported by the GMD. We specifically address the searches for the different chemical entities within GMD, namely the metabolites, reference substances, and the chemically derivatized analytes. We report the diverse options for mass spectral analyses and highlight the decision tree-supported prediction of chemical substructures, a feature of GMD that currently appears to be a unique among the many tools for the analysis of gas chromatography–electron ionization mass spectra.

Rasche, F.; Svatoš, A.; Maddula, R. K.; Böttcher, C.; Böcker, S. Computing Fragmentation Trees from Tandem Mass Spectrometry Data Anal Chem 83, 1243-1251, (2011) DOI: 10.1021/ac101825k

The structural elucidation of organic compounds in complex biofluids and tissues remains a significant analytical challenge. For mass spectrometry, the manual interpretation of collision-induced dissociation (CID) mass spectra is cumbersome and requires expert knowledge, as the fragmentation mechanisms of ions formed from small molecules are not completely understood. The automated identification of compounds is generally limited to searching in spectral libraries. Here, we present a method for interpreting the CID spectra of the organic compound’s protonated ions by computing fragmentation trees that establish not only the molecular formula of the compound and all fragment ions but also the dependencies between fragment ions. This is an important step toward the automated identification of unknowns from the CID spectra of compounds that are not in any database.

Grzam, A.; Tennstedt, P.; Clemens, S.; Hell, R.; Meyer, A. J. Vacuolar sequestration of glutathione S-conjugates outcompetes a possible degradation of the glutathione moiety by phytochelatin synthase FEBS Lett 580, 6384-6390, (2006) DOI: 10.1016/j.febslet.2006.10.050


Stumpe, M.; Kandzia, R.; Göbel, C.; Rosahl, S.; Feussner, I. A pathogen-inducible divinyl ether synthase (CYP74D) from elicitor-treated potato suspension cells FEBS Lett 507, 371-376, (2001)

In elicitor-treated potato cells, 9-lipoxygenase-derived oxylipins accumulate with the divinyl ether colneleic acid as the major metabolite. Here, the identification of a potato cDNA is described, whose predicted amino acid sequence corresponds to divinyl ether synthases, belonging to the recently identified new P450 subfamily CYP74D. The recombinant protein was expressed in Escherichia coli and shown to metabolize 9-hydroperoxy linoleic acid to colneleic acid at pH 6.5. This fatty acid derivative has been implicated in functioning as a plant antimicrobial compound. RNA blot analyses revealed accumulation of divinyl ether synthase transcripts both upon infiltration of potato leaves with Pseudomonas syringae and after infection with Phytophthora infestans.
IPB Mainnav Search