jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 9 of 9.

Publications

Andreou, A.-Z.; Hornung, E.; Kunze, S.; Rosahl, S.; Feussner, I.; On the Substrate Binding of Linoleate 9-Lipoxygenases Lipids 44, 207-215, (2009) DOI: 10.1007/s11745-008-3264-4

Lipoxygenases (LOX; linoleate:oxygen oxidoreductase EC 1.13.11.12) consist of a class of enzymes that catalyze the regio‐ and stereo specific dioxygenation of polyunsaturated fatty acids. Here we characterize two proteins that belong to the less studied class of 9‐LOXs, Solanum tuberosum StLOX1 and Arabidopsis thaliana AtLOX1. The proteins were recombinantly expressed in E. coli and the product specificity of the enzymes was tested against different fatty acid substrates. Both enzymes showed high specificity against all tested C18 fatty acids and produced (9S )‐hydroperoxides. However, incubation of the C20 fatty acid arachidonic acid with AtLOX1 gave a mixture of racemic hydroperoxides. On the other hand, with StLOX1 we observed the formation of a mixture of products among which the (5S )‐hydroperoxy eicosatetraenoic acid (5S‐ H(P)ETE) was the most abundant. Esterified fatty acids were no substrates. We used site directed mutagenesis to modify a conserved valine residue in the active site of StLOX1 and examine the importance of space within the active site, which has been shown to play a role in determining the positional specificity. The Val576Phe mutant still catalyzed the formation of (9S )‐hydroperoxides with C18 fatty acids, while it exhibited altered specificity against arachidonic acid and produced mainly (11S )‐H(P)ETE. These data confirm the model that in case of linoleate 9‐LOX binding of the substrate takes place with the carboxyl‐group first.
Books and chapters

Clemens, S.; Simm, C.; Maier, T.; Heavy Metal‐binding Proteins and Peptides (2005) DOI: 10.1002/3527600035.bpol8010

IntroductionHistorical OutlineChemical StructuresNomenclature and Structure of MetallothioneinsPhytochelatins and Phytochelatin–Metal ComplexesStructural Properties of MetallochaperonesChemical Analysis and DetectionMetallothioneinsPhytochelatinsOccurrenceMetallothioneinsPhytochelatinsMetallochaperonesFunctionsMetal Homeostasis and the Role of MetallochaperonesBuffering and DetoxificationPhytochelatin FunctionsMetallothionein FunctionsPhysiologyMetallothionein Localization and IsoformsLocalization and Compartmentation of Phytochelatin SynthesisBiochemistryMetal‐binding Characteristics of MetallothioneinsBiochemistry of Phytochelatin SynthesisMolecular GeneticsMetallothionein Genes and Their RegulationPhytochelatin Synthase GenesBiotechnological ApplicationsPatentsOutlook and Perspectives
Books and chapters

Scheel, D.; Nuernberger, T.; Signal Transduction in Plant Defense Responses to Fungal Infection 1-30, (2004)

0
Books and chapters

Rosahl, S.; Feussner, I.; Oxylipins 329-354, (2004)

0
Books and chapters

Lee, J.; Nürnberger, T.; Is Pore Formation Activity of HrpZ Required for Defence Activation in Plant Cells? 165-173, (2003) DOI: 10.1007/978-94-017-0133-4_18

The HrpZ gene product, harpin, is an export substrate of the type III secretion system of phytopathogenic Pseudomonas syringae. The role of this protein in pathogenesis is largely unknown. We previously determined that HrpZ binds to lipids and can form cation pores in synthetic lipid bilayers. Such pore-forming activity may allow nutrient release during bacterial colonisation of host plants. In addition. HrpZ is known to trigger plant defence responses in a variety of plants, such as tobacco. We have previously also characterised a binding site in tobacco plasma membranes that likely mediates HrpZ-induced defence responses. In order to reconcile these findings, we pose the question as to whether the activation of plant defence responses by HrpZ is mediated through a “classical” receptor perception mode or if plant membrane perturbation through the inherent pore-forming activity of HrpZ may induce defence responses. As defence in parsley cells can be induced both in a receptor-mediated manner or through ionophores these cells served as an ideal system for our analysis. We first performed ligand binding studies to characterise the presence of a binding site/receptor. We further digested HrpZ with endopeptidases and used subfragments of HrpZ to assess the elicitor-active domain of HrpZ. A C-terminal region of HrpZ appears to be sufficient to elicit plant defence responses. A novel assay involving dye-loaded liposomes was developed to validate previous electrophysiological findings on HrpZ-mediated cation pore formation. More importantly, this assay was used to establish if the elicitor-active C-terminal fragment of HrpZ could form pores. Our findings suggest that the structural requirements for ion pore formation and activation of plant defence responses by HrpZ are different. Thus, ion pore formation alone may not explain the activation of plant defence by HrpZ.
Books and chapters

Scheel, D.; Oxidative burst and the role of reactive oxygen species in plant-pathogen interactions (Inzé, D. & van Montagu, M., eds.). 137-153, (2002)

0
Books and chapters

Clemens, S.; Thomine, S.; Schroeder, J. I.; Molecular mechanisms that control plant tolerance to heavy metals and possible roles towards manipulating metal accumulation 665-691, (2002)

0
Books and chapters

Scheel, D.; Blume, B.; Brunner, F.; Fellbrich, G.; Dalbøge, H.; Hirt, H.; Kauppinen, S.; Kroj, T.; Ligterink, W.; Nürnberger, T.; Tschöpe, M.; Zinecker, H.; zur Nieden, U.; Receptor-mediated signal transduction in plant defense 131-135, (2000)

0
Books and chapters

Bruns, I.; Sutter, K.; Neumann, D.; Krauss, G.-J.; Glutathione accumulation - a specific response of mosses to heavy metal stress 389-391, (2000)

0
IPB Mainnav Search