jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 9 of 9.

Publications

Mönchgesang, S.; Strehmel, N.; Trutschel, D.; Westphal, L.; Neumann, S.; Scheel, D.; Plant-to-Plant Variability in Root Metabolite Profiles of 19 Arabidopsis thaliana Accessions Is Substance-Class-Dependent Int. J. Mol. Sci. 17, 1565, (2016) DOI: 10.3390/ijms17091565

Natural variation of secondary metabolism between different accessions of Arabidopsis thaliana (A. thaliana) has been studied extensively. In this study, we extended the natural variation approach by including biological variability (plant-to-plant variability) and analysed root metabolic patterns as well as their variability between plants and naturally occurring accessions. To screen 19 accessions of A. thaliana, comprehensive non-targeted metabolite profiling of single plant root extracts was performed using ultra performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS). Linear mixed models were applied to dissect the total observed variance. All metabolic profiles pointed towards a larger plant-to-plant variability than natural variation between accessions and variance of experimental batches. Ratios of plant-to-plant to total variability were high and distinct for certain secondary metabolites. None of the investigated accessions displayed a specifically high or low biological variability for these substance classes. This study provides recommendations for future natural variation analyses of glucosinolates, flavonoids, and phenylpropanoids and also reference data for additional substance classes.
Books and chapters

Clemens, S.; Simm, C.; Maier, T.; Heavy Metal‐binding Proteins and Peptides (2005) DOI: 10.1002/3527600035.bpol8010

IntroductionHistorical OutlineChemical StructuresNomenclature and Structure of MetallothioneinsPhytochelatins and Phytochelatin–Metal ComplexesStructural Properties of MetallochaperonesChemical Analysis and DetectionMetallothioneinsPhytochelatinsOccurrenceMetallothioneinsPhytochelatinsMetallochaperonesFunctionsMetal Homeostasis and the Role of MetallochaperonesBuffering and DetoxificationPhytochelatin FunctionsMetallothionein FunctionsPhysiologyMetallothionein Localization and IsoformsLocalization and Compartmentation of Phytochelatin SynthesisBiochemistryMetal‐binding Characteristics of MetallothioneinsBiochemistry of Phytochelatin SynthesisMolecular GeneticsMetallothionein Genes and Their RegulationPhytochelatin Synthase GenesBiotechnological ApplicationsPatentsOutlook and Perspectives
Books and chapters

Scheel, D.; Nuernberger, T.; Signal Transduction in Plant Defense Responses to Fungal Infection 1-30, (2004)

0
Books and chapters

Rosahl, S.; Feussner, I.; Oxylipins 329-354, (2004)

0
Books and chapters

Lee, J.; Nürnberger, T.; Is Pore Formation Activity of HrpZ Required for Defence Activation in Plant Cells? 165-173, (2003) DOI: 10.1007/978-94-017-0133-4_18

The HrpZ gene product, harpin, is an export substrate of the type III secretion system of phytopathogenic Pseudomonas syringae. The role of this protein in pathogenesis is largely unknown. We previously determined that HrpZ binds to lipids and can form cation pores in synthetic lipid bilayers. Such pore-forming activity may allow nutrient release during bacterial colonisation of host plants. In addition. HrpZ is known to trigger plant defence responses in a variety of plants, such as tobacco. We have previously also characterised a binding site in tobacco plasma membranes that likely mediates HrpZ-induced defence responses. In order to reconcile these findings, we pose the question as to whether the activation of plant defence responses by HrpZ is mediated through a “classical” receptor perception mode or if plant membrane perturbation through the inherent pore-forming activity of HrpZ may induce defence responses. As defence in parsley cells can be induced both in a receptor-mediated manner or through ionophores these cells served as an ideal system for our analysis. We first performed ligand binding studies to characterise the presence of a binding site/receptor. We further digested HrpZ with endopeptidases and used subfragments of HrpZ to assess the elicitor-active domain of HrpZ. A C-terminal region of HrpZ appears to be sufficient to elicit plant defence responses. A novel assay involving dye-loaded liposomes was developed to validate previous electrophysiological findings on HrpZ-mediated cation pore formation. More importantly, this assay was used to establish if the elicitor-active C-terminal fragment of HrpZ could form pores. Our findings suggest that the structural requirements for ion pore formation and activation of plant defence responses by HrpZ are different. Thus, ion pore formation alone may not explain the activation of plant defence by HrpZ.
Books and chapters

Scheel, D.; Oxidative burst and the role of reactive oxygen species in plant-pathogen interactions (Inzé, D. & van Montagu, M., eds.). 137-153, (2002)

0
Books and chapters

Clemens, S.; Thomine, S.; Schroeder, J. I.; Molecular mechanisms that control plant tolerance to heavy metals and possible roles towards manipulating metal accumulation 665-691, (2002)

0
Books and chapters

Scheel, D.; Blume, B.; Brunner, F.; Fellbrich, G.; Dalbøge, H.; Hirt, H.; Kauppinen, S.; Kroj, T.; Ligterink, W.; Nürnberger, T.; Tschöpe, M.; Zinecker, H.; zur Nieden, U.; Receptor-mediated signal transduction in plant defense 131-135, (2000)

0
Books and chapters

Bruns, I.; Sutter, K.; Neumann, D.; Krauss, G.-J.; Glutathione accumulation - a specific response of mosses to heavy metal stress 389-391, (2000)

0
IPB Mainnav Search