jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 3 of 3.

Publications

Haapalainen, M.; Engelhardt, S.; Küfner, I.; Li, C.-M.; Nürnberger, T.; Lee, J.; Romantschuk, M.; Taira, S.; Functional mapping of harpin HrpZ of Pseudomonas syringae reveals the sites responsible for protein oligomerization, lipid interactions and plant defence induction Mol. Plant Pathol. 12, 151-166, (2011) DOI: 10.1111/j.1364-3703.2010.00655.x

Harpin HrpZ is one of the most abundant proteins secreted through the pathogenesis‐associated type III secretion system of the plant pathogen Pseudomonas syringae. HrpZ shows membrane‐binding and pore‐forming activities in vitro, suggesting that it could be targeted to the host cell plasma membrane. We studied the native molecular forms of HrpZ and found that it forms dimers and higher order oligomers. Lipid binding by HrpZ was tested with 15 different membrane lipids, with HrpZ interacting only with phosphatidic acid. Pore formation by HrpZ in artificial lipid vesicles was found to be dependent on the presence of phosphatidic acid. In addition, HrpZ was able to form pores in vesicles prepared from Arabidopsis thaliana plasma membrane, providing evidence for the suggested target of HrpZ in the host. To map the functions associated with HrpZ, we constructed a comprehensive series of deletions in the hrpZ gene derived from P. syringae pv. phaseolicola, and studied the mutant proteins. We found that oligomerization is mainly mediated by a region near the C‐terminus of the protein, and that the same region is also essential for membrane pore formation. Phosphatidic acid binding seems to be mediated by two regions separate in the primary structure. Tobacco, a nonhost plant, recognizes, as a defence elicitor, a 24‐amino‐acid HrpZ fragment which resides in the region indispensable for the oligomerization and pore formation functions of HrpZ.
Publications

Engelhardt, S.; Lee, J.; Gäbler, Y.; Kemmerling, B.; Haapalainen, M.-L.; Li, C.-M.; Wei, Z.; Keller, H.; Joosten, M.; Taira, S.; Nürnberger, T.; Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZ1 in ion-conducting pore formation and activation of plant immunity Plant J. 57, 706-717, (2009) DOI: 10.1111/j.1365-313X.2008.03723.x

The HrpZ1 gene product from phytopathogenic Pseudomonas syringae is secreted in a type‐III secretion system‐dependent manner during plant infection. The ability of HrpZ1 to form ion‐conducting pores is proposed to contribute to bacterial effector delivery into host cells, or may facilitate the nutrition of bacteria in the apoplast. Furthermore, HrpZ1 is reminiscent of a pathogen‐associated molecular pattern (PAMP) that triggers immunity‐associated responses in a variety of plants. Here, we provide evidence that the ion pore formation and immune activation activities of HrpZ1 have different structure requirements. All HrpZ1 orthologous proteins tested possess pore formation activities, but some of these proteins fail to trigger plant defense‐associated responses. In addition, a C‐terminal fragment of HrpZ1 retains the ability to activate plant immunity, whereas ion pore formation requires intact HrpZ1. Random insertion mutagenesis of HrpZ1 further revealed the C terminus to be important for the PAMP activity of the protein. HrpZ1 binds to plant membranes with high affinity and specificity, suggesting that the activation of plant immunity‐associated responses by HrpZ1 is receptor‐mediated. Our data are consistent with dual roles of HrpZ1 as a virulence factor affecting host membrane integrity, and as a microbial pattern governing the activation of plant immunity during infection.
Publications

Li, C.-M.; Haapalainen, M.; Lee, J.; Nürnberger, T.; Romantschuk, M.; Taira, S.; Harpin of Pseudomonas syringae pv. phaseolicola Harbors a Protein Binding Site Mol. Plant Microbe Interact. 18, 60-66, (2005) DOI: 10.1094/MPMI-18-0060

Harpin HrpZ of plant-pathogenic bacterium Pseudomonas syringae elicits a hypersensitive response (HR) in some nonhost plants, but its function in the pathogenesis process is still obscure. HrpZ-interacting proteins were identified by screening a phage-display library of random peptides. HrpZ of the bean pathogen P. syringae pv. Phaseolicola (HrpZPph) shows affinity to peptides with a consensus amino acid motif W(L)ARWLL(G/L). To localize the peptide-binding site, the hrpZPph gene was mutagenized with randomly placed 15-bp insertions, and the mutant proteins were screened for the peptide-binding ability. Mutations that inhibited peptide-binding localized to the central region of hrpZPph, which is separate from the previously determined HR-inducing region. Antiserum raised against one of the hrpZPph-binding peptides recognized small proteins in bean, tomato, parsley, and Arabidopsis thaliana but none in tobacco. On native protein blots, hrpZPph bound to a bean protein with similar pI as the protein recognized by the peptide antiserum. The result suggests a protein-protein interaction between the harpin and a host plant protein, possibly involved in the bacterial pathogenesis.
IPB Mainnav Search