jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 3 of 3.

Publications

ten Hoopen, P.; Hunger, A.; Muller, A.; Hause, B.; Kramell, R.; Wasternack, C.; Rosahl, S.; Conrad, U.; Immunomodulation of jasmonate to manipulate the wound response J. Exp. Bot. 58, 2525-2535, (2007) DOI: 10.1093/jxb/erm122

Jasmonates are signals in plant stress responses and development. The exact mode of their action is still controversial. To modulate jasmonate levels intracellularly as well as compartment-specifically, transgenic Nicotiana tabacum plants expressing single-chain antibodies selected against the naturally occurring (3R,7R)-enantiomer of jasmonic acid (JA) were created in the cytosol and the endoplasmic reticulum. Consequently, the expression of anti-JA antibodies in planta caused JA-deficient phenotypes such as insensitivity of germinating transgenic seedlings towards methyl jasmonate and the loss of wound-induced gene expression. Results presented here suggest an essential role for cytosolic JA in the wound response of tobacco plants. The findings support the view that substrate availability takes part in regulating JA biosynthesis upon wounding. Moreover, high JA levels observed in immunomodulated plants in response to wounding suggest that tobacco plants are able to perceive a reduced level of physiologically active JA and attempt to compensate for this by increased JA accumulation.
Publications

Halim, V. A.; Hunger, A.; Macioszek, V.; Landgraf, P.; Nürnberger, T.; Scheel, D.; Rosahl, S.; The oligopeptide elicitor Pep-13 induces salicylic acid-dependent and -independent defense reactions in potato Physiol. Mol. Plant Pathol. 64, 311-318, (2004) DOI: 10.1016/j.pmpp.2004.10.003

The Phytophthora-derived oligopeptide elicitor, Pep-13, originally identified as an inducer of plant defense in the nonhost–pathogen interaction of parsley and Phytophthora sojae, triggers defense responses in potato. In cultured potato cells, Pep-13 treatment results in an oxidative burst and activation of defense genes. Infiltration of Pep-13 into leaves of potato plants induces the accumulation of hydrogen peroxide, defense gene expression and the accumulation of jasmonic and salicylic acids. Derivatives of Pep-13 show similar elicitor activity in parsley and potato, suggesting a receptor-mediated induction of defense response in potato similar to that observed in parsley. However, unlike in parsley, infiltration of Pep-13 into leaves leads to the development of hypersensitive response-like cell death in potato. Interestingly, Pep-13-induced necrosis formation, hydrogen peroxide formation and accumulation of jasmonic acid, but not activation of a subset of defense genes, is dependent on salicylic acid, as shown by infiltration of Pep-13 into leaves of potato plants unable to accumulate salicylic acid. Thus, in a host plant of Phytophthora infestans, Pep-13 is able to elicit salicylic acid-dependent and -independent defense responses.
Publications

Landgraf, P.; Feussner, I.; Hunger, A.; Scheel, D.; Rosahl, S.; Systemic Accumulation of 12-oxo-phytodienoic Acid in SAR-induced Potato Plants Eur. J. Plant Pathol. 108, 279-283, (2002) DOI: 10.1023/A:1015132615650

In potato plants induced for systemic resistance by infiltration with Pseudomonas syringae pv. maculicola, 12-oxo-phytodienoic acid (OPDA) accumulated in infiltrated leaves as well as in non-treated leaves of infected plants. In contrast, jasmonic acid (JA) levels increased only in infiltrated leaves, suggesting that the biosynthetic precursor of JA, OPDA, might play a role in systemic acquired resistance.
IPB Mainnav Search