jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 3 of 3.

Publications

Kumar, A.; Gopalswamy, M.; Wishart, C.; Henze, M.; Eschen-Lippold, L.; Donnelly, D.; Balbach, J.; N-Terminal Phosphorylation of Parathyroid Hormone (PTH) Abolishes Its Receptor Activity ACS Chem. Biol. 9, 2465-2470, (2014) DOI: 10.1021/cb5004515

The parathyroid hormone (PTH) is an 84-residue peptide, which regulates the blood Ca2+ level via GPCR binding and subsequent activation of intracellular signaling cascades. PTH is posttranslationally phosphorylated in the parathyroid glands; however, the functional significance of this processes is not well characterized. In the present study, mass spectrometric analysis revealed three sites of phosphorylation, and NMR spectroscopy assigned Ser1, Ser3, and Ser17 as modified sites. These sites are located at the N-terminus of the hormone, which is important for receptor recognition and activation. NMR shows further that the three phosphate groups remotely disturb the α-helical propensity up to Ala36. An intracellular cAMP accumulation assay elucidated the biological significance of this phosphorylation because it ablated the PTH-mediated signaling. Our studies thus shed light on functional implications of phosphorylation at native PTH as an additional level of regulation.
Publications

Brauch, S.; Henze, M.; Osswald, B.; Naumann, K.; Wessjohann, L. A.; van Berkel, S. S.; Westermann, B.; Fast and efficient MCR-based synthesis of clickable rhodamine tags for protein profiling Org. Biomol. Chem. 10, 958-965, (2012) DOI: 10.1039/C1OB06581E

Protein profiling probes are important tools for studying the composition of the proteome and as such have contributed greatly to the understanding of various complex biological processes in higher organisms. For this purpose the application of fluorescently labeled activity or affinity probes is highly desirable. Especially for in vivodetection of low abundant target proteins, otherwise difficult to analyse by standard blotting techniques, fluorescently labeled profiling probes are of high value. Here, a one-pot protocol for the synthesis of activated fluorescent labels (i.e.azide, alkynyl or NHS), based on the Ugi-4-component reaction (Ugi-4CR), is presented. As a result of the peptoidic structure formed, the fluorescent properties of the products are pH insensitive. Moreover, the applicability of these probes, as exemplified by the labeling of model protein BSA, will be discussed.
Publications

Henze, M.; Kreye, O.; Brauch, S.; Nitsche, C.; Naumann, K.; Wessjohann, L. A.; Westermann, B.; Photoaffinity-Labeled Peptoids and Depsipeptides by Multicomponent Reactions Synthesis 2010, 2997-3003, (2010) DOI: 10.1055/s-0030-1258182

Photoaffinity tags can be incorporated easily into peptoids and congeners by the Ugi and Passerini multicomponent reactions. Products related to photo-methionine and photo-leucine can be accomplished by diazirine-containing building blocks. The same protocols can be used to synthesize derivatives with benzophenone photo cross-linkers.
IPB Mainnav Search