jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 10 of 36.

Publications

Nietzschmann, L.; Smolka, U.; Perino, E. H. B.; Gorzolka, K.; Stamm, G.; Marillonnet, S.; Bürstenbinder, K.; Rosahl, S.; The secreted PAMP-induced peptide StPIP1_1 activates immune responses in potato Sci. Rep. 13, 20534, (2023) DOI: 10.1038/s41598-023-47648-x

Treatment of potato plants with the pathogen-associated molecular pattern Pep-13 leads to the activation of more than 1200 genes. One of these, StPIP1_1, encodes a protein of 76 amino acids with sequence homology to PAMP-induced secreted peptides (PIPs) from Arabidopsis thaliana. Expression of StPIP1_1 is also induced in response to infection with Phytophthora infestans, the causal agent of late blight disease. Apoplastic localization of StPIP1_1-mCherry fusion proteins is dependent on the presence of the predicted signal peptide. A synthetic peptide corresponding to the last 13 amino acids of StPIP1_1 elicits the expression of the StPIP1_1 gene itself, as well as that of pathogenesis related genes. The oxidative burst induced by exogenously applied StPIP1_1 peptide in potato leaf disks is dependent on functional StSERK3A/B, suggesting that StPIP1_1 perception occurs via a receptor complex involving the co-receptor StSERK3A/B. Moreover, StPIP1_1 induces expression of FRK1 in Arabidopsis in an RLK7-dependent manner. Expression of an RLK from potato with high sequence homology to AtRLK7 is induced by StPIP1_1, by Pep-13 and in response to infection with P. infestans. These observations are consistent with the hypothesis that, upon secretion, StPIP1_1 acts as an endogenous peptide required for amplification of the defense response.
Publications

Gorzolka, K.; Perino, E. H. B.; Lederer, S.; Smolka, U.; Rosahl, S.; Lysophosphatidylcholine 17:1 from the Leaf Surface of the Wild Potato Species Solanum bulbocastanum Inhibits Phytophthora infestans J. Agr. Food Chem. 69, 5607-5617, (2021) DOI: 10.1021/acs.jafc.0c07199

Late blight, caused by the oomycete Phytophthora infestans, is economically the most important foliar disease of potato. To assess the importance of the leaf surface, as the site of the first encounter of pathogen and host, we performed untargeted profiling by liquid chromatography–mass spectrometry of leaf surface metabolites of the susceptible cultivated potato Solanum tuberosum and the resistant wild potato species Solanum bulbocastanum. Hydroxycinnamic acid amides, typical phytoalexins of potato, were abundant on the surface of S. tuberosum, but not on S. bulbocastanum. One of the metabolites accumulating on the surface of the wild potato was identified as lysophosphatidylcholine carrying heptadecenoic acid, LPC17:1. In vitro assays revealed that both spore germination and mycelial growth of P. infestans were efficiently inhibited by LPC17:1, suggesting that leaf surface metabolites from wild potato species could contribute to early defense responses against P. infestans.
Publications

Nietzschmann, L.; Gorzolka, K.; Smolka, U.; Matern, A.; Eschen-Lippold, L.; Scheel, D.; Rosahl, S.; Early Pep-13-induced immune responses are SERK3A/B-dependent in potato Sci. Rep. 9, 18380, (2019) DOI: 10.1038/s41598-019-54944-y

Potato plants treated with the pathogen-associated molecular pattern Pep-13 mount salicylic acid- and jasmonic acid-dependent defense responses, leading to enhanced resistance against Phytophthora infestans, the causal agent of late blight disease. Recognition of Pep-13 is assumed to occur by binding to a yet unknown plasma membrane-localized receptor kinase. The potato genes annotated to encode the co-receptor BAK1, StSERK3A and StSERK3B, are activated in response to Pep-13 treatment. Transgenic RNAi-potato plants with reduced expression of both SERK3A and SERK3B were generated. In response to Pep-13 treatment, the formation of reactive oxygen species and MAP kinase activation, observed in wild type plants, is highly reduced in StSERK3A/B-RNAi plants, suggesting that StSERK3A/B are required for perception of Pep-13 in potato. In contrast, defense gene expression is induced by Pep-13 in both control and StSERK3A/B-depleted plants. Altered morphology of StSERK3A/B-RNAi plants correlates with major shifts in metabolism, as determined by untargeted metabolite profiling. Enhanced levels of hydroxycinnamic acid amides, typical phytoalexins of potato, in StSERK3A/B-RNAi plants are accompanied by significantly decreased levels of flavonoids and steroidal glycoalkaloids. Thus, altered metabolism in StSERK3A/B-RNAi plants correlates with the ability of StSERK3A/B-depleted plants to mount defense, despite highly decreased early immune responses.
Publications

Westphal, L.; Strehmel, N.; Eschen-Lippold, L.; Bauer, N.; Westermann, B.; Rosahl, S.; Scheel, D.; Lee, J.; pH effects on plant calcium fluxes: lessons from acidification-mediated calcium elevation induced by the γ-glutamyl-leucine dipeptide identified from Phytophthora infestans Sci. Rep. 9, 4733, (2019) DOI: 10.1038/s41598-019-41276-0

Cytosolic Ca2+ ([Ca2+]cyt) elevation is an early signaling response upon exposure to pathogen-derived molecules (so-called microbe-associated molecular patterns, MAMPs) and has been successfully used as a quantitative read-out in genetic screens to identify MAMP receptors or their associated components. Here, we isolated and identified by mass spectrometry the dipeptide γ-Glu-Leu as a component of a Phytophthora infestans mycelium extract that induces [Ca2+]cyt elevation. Treatment of Arabidopsis seedlings with synthetic γ-Glu-Leu revealed stimulatory effects on defense signaling, including a weak enhancement of the expression of some MAMP-inducible genes or affecting the refractory period to a second MAMP elicitation. However, γ-Glu-Leu is not a classical MAMP since pH adjustment abolished these activities and importantly, the observed effects of γ-Glu-Leu could be recapitulated by mimicking extracellular acidification. Thus, although γ-Glu-Leu can act as a direct agonist of calcium sensing receptors in animal systems, the Ca2+-mobilizing activity in plants reported here is due to acidification. Low pH also shapes the Ca2+ signature of well-studied MAMPs (e.g. flg22) or excitatory amino acids such as glutamate. Overall, this work serves as a cautionary reminder that in defense signaling studies where Ca2+ flux measurements are concerned, it is important to monitor and consider the effects of pH.
Publications

Küster, N.; Rosahl, S.; Dräger, B.; Potato plants with genetically engineered tropane alkaloid precursors Planta 245, 355-365, (2017) DOI: 10.1007/s00425-016-2610-7

Main conclusionSolanum tuberosum tropinone reductase I reduced tropinone in vivo. Suppression of tropinone reductase II strongly reduced calystegines in sprouts. Overexpression of putrescine N -methyltransferase did not alter calystegine accumulation.Calystegines are hydroxylated alkaloids formed by the tropane alkaloid pathway. They accumulate in potato (Solanum tuberosum L., Solanaceae) roots and sprouting tubers. Calystegines inhibit various glycosidases in vitro due to their sugar-mimic structure, but functions of calystegines in plants are not understood. Enzymes participating in or competing with calystegine biosynthesis, including putrescine N-methyltransferase (PMT) and tropinone reductases (TRI and TRII), were altered in their activity in potato plants by RNA interference (RNAi) and by overexpression. The genetically altered potato plants were investigated for the accumulation of calystegines and for intermediates of their biosynthesis. An increase in N-methylputrescine provided by DsPMT expression was not sufficient to increase calystegine accumulation. Overexpression and gene knockdown of StTRI proved that S. tuberosum TRI is a functional tropinone reductase in vivo, but no influence on calystegine accumulation was observed. When StTRII expression was suppressed by RNAi, calystegine formation was severely compromised in the transformed plants. Under phytochamber and green house conditions, the StTRII RNAi plants did not show phenotypic alterations. Further investigation of calystegines function in potato plants under natural conditions is enabled by the calystegine deprived StTRII RNAi plants.
Publications

Dobritzsch, M.; Lübken, T.; Eschen-Lippold, L.; Gorzolka, K.; Blum, E.; Matern, A.; Marillonnet, S.; Böttcher, C.; Dräger, B.; Rosahl, S.; MATE Transporter-Dependent Export of Hydroxycinnamic Acid Amides Plant Cell 28, 583-596, (2016) DOI: 10.1105/tpc.15.00706

The ability of Arabidopsis thaliana to successfully prevent colonization by Phytophthora infestans, the causal agent of late blight disease of potato (Solanum tuberosum), depends on multilayered defense responses. To address the role of surface-localized secondary metabolites for entry control, droplets of a P. infestans zoospore suspension, incubated on Arabidopsis leaves, were subjected to untargeted metabolite profiling. The hydroxycinnamic acid amide coumaroylagmatine was among the metabolites secreted into the inoculum. In vitro assays revealed an inhibitory activity of coumaroylagmatine on P. infestans spore germination. Mutant analyses suggested a requirement of the p-coumaroyl-CoA:agmatine N4-p-coumaroyl transferase ACT for the biosynthesis and of the MATE transporter DTX18 for the extracellular accumulation of coumaroylagmatine. The host plant potato is not able to efficiently secrete coumaroylagmatine. This inability is overcome in transgenic potato plants expressing the two Arabidopsis genes ACT and DTX18. These plants secrete agmatine and putrescine conjugates to high levels, indicating that DTX18 is a hydroxycinnamic acid amide transporter with a distinct specificity. The export of hydroxycinnamic acid amides correlates with a decreased ability of P. infestans spores to germinate, suggesting a contribution of secreted antimicrobial compounds to pathogen defense at the leaf surface.
Publications

Geissler, K.; Eschen-Lippold, L.; Naumann, K.; Schneeberger, K.; Weigel, D.; Scheel, D.; Rosahl, S.; Westphal, L.; Mutations in the EDR1 Gene Alter the Response of Arabidopsis thaliana to Phytophthora infestans and the Bacterial PAMPs flg22 and elf18 Mol. Plant Microbe Interact. 28, 122-133, (2015) DOI: 10.1094/MPMI-09-14-0282-R

Mechanistically, nonhost resistance of Arabidopsis thaliana against the oomycete Phytophthora infestans is not well understood. Besides PEN2 and PEN3, which contribute to penetration resistance, no further components have been identified so far. In an ethylmethane sulphonate–mutant screen, we mutagenized pen2-1 and screened for mutants with an altered response to infection by P. infestans. One of the mutants obtained, enhanced response to Phytophthora infestans6 (erp6), was analyzed. Whole-genome sequencing of erp6 revealed a single nucleotide polymorphism in the coding region of the kinase domain of At1g08720, which encodes the putative MAPKKK ENHANCED DISEASE RESISTANCE1 (EDR1). We demonstrate that three independent lines with knock-out alleles of edr1 mount an enhanced response to P. infestans inoculation, mediated by increased salicylic acid signaling and callose deposition. Moreover, we show that the single amino acid substitution in erp6 causes the loss of in vitro autophosphorylation activity of EDR1. Furthermore, growth inhibition experiments suggest a so-far-unknown involvement of EDR1 in the response to the pathogen-associated molecular patterns flg22 and elf18. We conclude that EDR1 contributes to the defense response of A. thaliana against P. infestans. Our data position EDR1 as a negative regulator in postinvasive nonhost resistance.
Preprints

Thum, A.; Mönchgesang, S.; Westphal, L.; Lübken, T.; Rosahl, S.; Neumann, S.; Posch, S.; Supervised Penalized Canonical Correlation Analysis arXiv (2014)

The canonical correlation analysis (CCA) is commonly used to analyze data sets with paired data, e.g. measurements of gene expression and metabolomic intensities of the same experiments. This allows to find interesting relationships between the data sets, e.g. they can be assigned to biological processes. However, it can be difficult to interpret the processes and often the relationships observed are not related to the experimental design but to some unknown parameters.Here we present an extension of the penalized CCA, the supervised penalized approach (spCCA), where the experimental design is used as a third data set and the correlation of the biological data sets with the design data set is maximized to find interpretable and meaningful canonical variables. The spCCA was successfully tested on a data set of Arabidopsis thaliana with gene expression and metabolite intensity measurements and resulted in eight significant canonical variables and their interpretation. We provide an R-package under the GPL license.
Publications

Landgraf, R.; Smolka, U.; Altmann, S.; Eschen-Lippold, L.; Senning, M.; Sonnewald, S.; Weigel, B.; Frolova, N.; Strehmel, N.; Hause, G.; Scheel, D.; Böttcher, C.; Rosahl, S.; The ABC Transporter ABCG1 Is Required for Suberin Formation in Potato Tuber Periderm Plant Cell 26, 3403-3415, (2014) DOI: 10.1105/tpc.114.124776

The lipid biopolymer suberin plays a major role as a barrier both at plant-environment interfaces and in internal tissues, restricting water and nutrient transport. In potato (Solanum tuberosum), tuber integrity is dependent on suberized periderm. Using microarray analyses, we identified ABCG1, encoding an ABC transporter, as a gene responsive to the pathogen-associated molecular pattern Pep-13. Further analyses revealed that ABCG1 is expressed in roots and tuber periderm, as well as in wounded leaves. Transgenic ABCG1-RNAi potato plants with downregulated expression of ABCG1 display major alterations in both root and tuber morphology, whereas the aerial part of the ABCG1-RNAi plants appear normal. The tuber periderm and root exodermis show reduced suberin staining and disorganized cell layers. Metabolite analyses revealed reduction of esterified suberin components and hyperaccumulation of putative suberin precursors in the tuber periderm of RNA interference plants, suggesting that ABCG1 is required for the export of suberin components.
Publications

Kopischke, M.; Westphal, L.; Schneeberger, K.; Clark, R.; Ossowski, S.; Wewer, V.; Fuchs, R.; Landtag, J.; Hause, G.; Dörmann, P.; Lipka, V.; Weigel, D.; Schulze-Lefert, P.; Scheel, D.; Rosahl, S.; Impaired sterol ester synthesis alters the response of Arabidopsis thaliana to Phytophthora infestans Plant J. 73, 456-468, (2013) DOI: 10.1111/tpj.12046

Non‐host resistance of Arabidopsis thaliana against Phytophthora infestans, the causal agent of late blight disease of potato, depends on efficient extracellular pre‐ and post‐invasive resistance responses. Pre‐invasive resistance against P. infestans requires the myrosinase PEN2. To identify additional genes involved in non‐host resistance to P. infestans, a genetic screen was performed by re‐mutagenesis of pen2 plants. Fourteen independent mutants were isolated that displayed an enhanced response to Phytophthora (erp) phenotype. Upon inoculation with P. infestans, two mutants, pen2‐1 erp1‐3 and pen2‐1 erp1‐4, showed an enhanced rate of mesophyll cell death and produced excessive callose deposits in the mesophyll cell layer. ERP1 encodes a phospholipid:sterol acyltransferase (PSAT1) that catalyzes the formation of sterol esters. Consistent with this, the tested T‐DNA insertion lines of PSAT1 are phenocopies of erp1 plants. Sterol ester levels are highly reduced in all erp1/psat1 mutants, whereas sterol glycoside levels are increased twofold. Excessive callose deposition occurred independently of PMR4/GSL5 activity, a known pathogen‐inducible callose synthase. A similar formation of aberrant callose deposits was triggered by the inoculation of erp1psat1 plants with powdery mildew. These results suggest a role for sterol conjugates in cell non‐autonomous defense responses against invasive filamentous pathogens.
IPB Mainnav Search