jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 6 of 6.

Printed publications

Liu, N.; Jiang, X.; Zhong, G.; Wang, W.; Hake, K.; Matschi, S.; Lederer, S.; Hoehenwarter, W.; Sun, Q.; Lee, J.; Romeis, T.; Tang, D.; CAMTA3 repressor destabilization triggers TIR domain protein TN2-mediated autoimmunity in the Arabidopsis exo70B1 mutant Plant Cell (2024) DOI: 10.1093/plcell/koae036

Calcium-dependent protein kinases (CPKs) can decode and translate intracellular calcium signals to induce plant immunity. Mutation of the exocyst subunit gene EXO70B1 causes autoimmunity that depends on CPK5 and the Toll/interleukin-1 receptor (TIR) domain resistance protein TIR-NBS2 (TN2), where direct interaction with TN2 stabilizes CPK5 kinase activity. However, how the CPK5–TN2 interaction initiates downstream immune responses remains unclear. Here, we show that, besides CPK5 activity, the physical interaction between CPK5 and functional TN2 triggers immune activation in exo70B1 and may represent reciprocal regulation between CPK5 and the TIR domain functions of TN2 in Arabidopsis (Arabidopsis thaliana). Moreover, we detected differential phosphorylation of the calmodulin-binding transcription activator 3 (CAMTA3) in the cpk5 background. CPK5 directly phosphorylates CAMTA3 at S964, contributing to its destabilization. The gain-of-function CAMTA3A855V variant that resists CPK5-induced degradation rescues immunity activated through CPK5 overexpression or exo70B1 mutation. Thus, CPK5-mediated immunity is executed through CAMTA3 repressor degradation via phosphorylation-induced and/or calmodulin-regulated processes. Conversely, autoimmunity in camta3 also partially requires functional CPK5. While the TIR domain activity of TN2 remains to be tested, our study uncovers a TN2–CPK5–CAMTA3 signaling module for exo70B1-mediated autoimmunity, highlighting the direct embedding of a calcium-sensing decoder element within resistance signalosomes.
Publications

Eichstädt, B.; Lederer, S.; Trempel, F.; Jiang, X.; Guerra, T.; Waadt, R.; Lee, J.; Liese, A.; Romeis, T.; Plant immune memory in systemic tissue does not involve changes in rapid calcium signaling Front. Plant Sci. 12, 798230, (2021) DOI: 10.3389/fpls.2021.798230

Upon pathogen recognition, a transient rise in cytoplasmic calcium levels is one of the earliest events in plants and a prerequisite for defense initiation and signal propagation from a local site to systemic plant tissues. However, it is unclear if calcium signaling differs in the context of priming: Do plants exposed to a first pathogen stimulus and have consequently established systemic acquired resistance (SAR) display altered calcium responses to a second pathogen stimulus? Several calcium indicator systems including aequorin, YC3.6 or R-GECO1 have been used to document local calcium responses to the bacterial flg22 peptide but systemic calcium imaging within a single plant remains a technical challenge. Here, we report on an experimental approach to monitor flg22-induced calcium responses in systemic leaves of primed plants. The calcium-dependent protein kinase CPK5 is a key calcium sensor and regulator of the NADPH oxidase RBOHD and plays a role in the systemic calcium-ROS signal propagation. We therefore compared flg22-induced cytoplasmic calcium changes in Arabidopsis wild-type, cpk5 mutant and CPK5-overexpressing plants (exhibiting constitutive priming) by introgressing the calcium indicator R-GECO1-mTurquoise that allows internal normalization through mTurquoise fluorescence. Aequorin-based analyses were included for comparison. Based on the R-GECO1-mTurquoise data, CPK5-OE appears to reinforce an “oscillatory-like” Ca2+ signature in flg22-treated local tissues. However, no change was observed in the flg22-induced calcium response in the systemic tissues of plants that had been pre-challenged by a priming stimulus – neither in wild-type nor in cpk5 or CPK5-OE-lines. These data indicate that the mechanistic manifestation of a plant immune memory in distal plant parts required for enhanced pathogen resistance does not include changes in rapid calcium signaling upstream of CPK5 but rather relies on downstream defense responses.
Publications

Jiang, X.; Hoehenwarter, W.; Scheel, D.; Lee, J.; Phosphorylation of the CAMTA3 Transcription Factor Triggers Its Destabilization and Nuclear Export Plant Physiol. 184, 1056-1071, (2020) DOI: 10.1104/pp.20.00795

The Arabidopsis (Arabidopsis thaliana) calmodulin-binding transcription activator3 (CAMTA3) is a repressor of immunity-related genes but an activator of cold-induced or general stress-responsive genes in plants. Post-transcriptional or posttranslational mechanisms have been proposed to control CAMTA3 functions in different stress responses. Here, we show that treatment with the bacterial flg22 elicitor induces CAMTA3 phosphorylation, which is accompanied by its destabilization and nuclear export. Two flg22-responsive mitogen-activated protein kinases (MAPKs), MPK3 and MPK6, directly phosphorylate CAMTA3, with the phospho-sites contributing to CAMTA3 degradation and suppression of downstream target gene expression. However, the flg22-induced nuclear export and phospho-mobility shift can still be observed for the CAMTA3 phospho-null variant of the MAPK-modified sites, suggesting additional flg22-responsive kinases might be involved. Taken together, we propose that flg22-induced CAMTA3 depletion facilitates de-repression of downstream defense target genes, which involves phosphorylation, increased protein turnover, and nucleo-cytoplasmic trafficking.
Printed publications

Jiang, X.; Hoehenwarter, W.; Scheel, D.; Lee, J.; Phosphorylation of the CAMTA3 transcription factor triggers its destabilization and nuclear export bioRxiv (2019) DOI: 10.1101/825323

The calmodulin-binding transcription activator 3 (CAMTA3) is a repressor of immunity-related genes but an activator of cold-induced genes in plants. Post-transcriptional or -translational mechanisms have been proposed to control CAMTA3’s role in the crosstalk between immune and chilling responses. Here, we show that treatment with the bacterial flg22 elicitor, but not cold stress, induces a phospho-mobility shift of CAMTA3 proteins. Correspondingly, CAMTA3 is directly phosphorylated by two flg22-responsive mitogen-activated protein kinases (MAPKs), MPK3 and MPK6, which triggers CAMTA3 nuclear export and destabilization. SR1IP1, a substrate E3 ubiquitin ligase adaptor required for pathogen-induced CAMTA3 degradation, is shown here to be likely plasma-membrane-localized and therefore cannot physically interact with the nuclear CAMTA3. Despite the flg22-inducible re-localization of CAMTA3 to the cytoplasm, we failed to detect CAMTA3-SR1IP1 complexes. Hence, the role of SR1IP1 for CAMTA3 degradation needs to be re-evaluated. Surprisingly, flg22 elicitation can still induce nuclear export and phospho-mobility shift of a phospho-null CAMTA3 that cannot be phosphorylated by MAPKs, suggesting the participation of additional flg22-responsive kinase(s). A constitutively-active calcium-dependent protein kinase, CPK5, can stimulate a phospho-mobility shift in CAMTA3 similar to that induced by flg22. Although CPK5 can interact with CAMTA3, it did not directly phosphorylate CAMTA3, suggesting the requirement of a still unidentified downstream kinase or additional components. Overall, at least two flg22-responsive kinase pathways target CAMTA3 to induce degradation that presumably serves to remove CAMTA3 from target promoters and de-repress expression of defence genes.
Publications

Furlan, G.; Nakagami, H.; Eschen-Lippold, L.; Jiang, X.; Majovsky, P.; Kowarschik, K.; Hoehenwarter, W.; Lee, J.; Trujillo, M.; Changes in PUB22 Ubiquitination Modes Triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 Dampen the Immune Response Plant Cell 29, 726-745, (2017) DOI: 10.1105/tpc.16.00654

Crosstalk between posttranslational modifications, such as ubiquitination and phosphorylation, play key roles in controlling the duration and intensity of signaling events to ensure cellular homeostasis. However, the molecular mechanisms underlying the regulation of negative feedback loops remain poorly understood. Here, we uncover a pathway in Arabidopsis thaliana by which a negative feedback loop involving the E3 ubiquitin ligase PUB22 that dampens the immune response is triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3), best known for its function in the activation of signaling. PUB22’s stability is controlled by MPK3-mediated phosphorylation of residues localized in and adjacent to the E2 docking domain. We show that phosphorylation is critical for stabilization by inhibiting PUB22 oligomerization and, thus, autoubiquitination. The activity switch allows PUB22 to dampen the immune response. This regulatory mechanism also suggests that autoubiquitination, which is inherent to most single unit E3s in vitro, can function as a self-regulatory mechanism in vivo.
Publications

Eschen-Lippold, L.; Jiang, X.; Elmore, J. M.; Mackey, D.; Shan, L.; Coaker, G.; Scheel, D.; Lee, J.; Bacterial AvrRpt2-Like Cysteine Proteases Block Activation of the Arabidopsis Mitogen-Activated Protein Kinases, MPK4 and MPK11 Plant Physiol. 171, 2223-2238, (2016) DOI: 10.1104/pp.16.00336

To establish infection, pathogens deliver effectors into host cells to target immune signaling components, including elements of mitogen-activated protein kinase (MPK) cascades. The virulence function of AvrRpt2, one of the first identified Pseudomonas syringae effectors, involves cleavage of the plant defense regulator, RPM1-INTERACTING PROTEIN4 (RIN4), and interference with plant auxin signaling. We show now that AvrRpt2 specifically suppresses the flagellin-induced phosphorylation of Arabidopsis (Arabidopsis thaliana) MPK4 and MPK11 but not MPK3 or MPK6. This inhibition requires the proteolytic activity of AvrRpt2, is associated with reduced expression of some plant defense genes, and correlates with enhanced pathogen infection in AvrRpt2-expressing transgenic plants. Diverse AvrRpt2-like homologs can be found in some phytopathogens, plant-associated and soil bacteria. Employing these putative bacterial AvrRpt2 homologs and inactive AvrRpt2 variants, we can uncouple the inhibition of MPK4/MPK11 activation from the cleavage of RIN4 and related members from the so-called nitrate-induced family as well as from auxin signaling. Thus, this selective suppression of specific mitogen-activated protein kinases is independent of the previously known AvrRpt2 targets and potentially represents a novel virulence function of AvrRpt2.
IPB Mainnav Search