jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 3 of 3.

Publications

Palm-Forster, M. A. T.; Eschen-Lippold, L.; Uhrig, J.; Scheel, D.; Lee, J.; A novel family of proline/serine-rich proteins, which are phospho-targets of stress-related mitogen-activated protein kinases, differentially regulates growth and pathogen defense in Arabidopsis thaliana Plant Mol. Biol. 95, 123-140, (2017) DOI: 10.1007/s11103-017-0641-5

The molecular actions of mitogen-activated protein kinases (MAPKs) are ultimately accomplished by the substrate proteins where phosphorylation affects their molecular properties and function(s), but knowledge regarding plant MAPK substrates is currently still fragmentary. Here, we uncovered a previously uncharacterized protein family consisting of three proline/serine-rich proteins (PRPs) that are substrates of stress-related MAPKs. We demonstrated the importance of a MAPK docking domain necessary for protein–protein interaction with MAPKs and consequently also for phosphorylation. The main phosphorylated site was mapped to a residue conserved between all three proteins, which when mutated to a non-phosphorylatable form, differentially affected their protein stability. Together with their distinct gene expression patterns, this differential accumulation of the three proteins upon phosphorylation probably contributes to their distinct function(s). Transgenic over-expression of PRP, the founding member, led to plants with enhanced resistance to Pseudomonas syringae pv. tomato DC3000. Older plants of the over-expressing lines have curly leaves and were generally smaller in stature. This growth phenotype was lost in plants expressing the phosphosite variant, suggesting a phosphorylation-dependent effect. Thus, this novel family of PRPs may be involved in MAPK regulation of plant development and / or pathogen resistance responses. As datamining associates PRP expression profiles with hypoxia or oxidative stress and PRP-overexpressing plants have elevated levels of reactive oxygen species, PRP may connect MAPK and oxidative stress signaling.
Publications

Pecher, P.; Eschen-Lippold, L.; Herklotz, S.; Kuhle, K.; Naumann, K.; Bethke, G.; Uhrig, J.; Weyhe, M.; Scheel, D.; Lee, J.; The Arabidopsis thaliana mitogen-activated protein kinases MPK3 and MPK6 target a subclass of ‘VQ-motif’-containing proteins to regulate immune responses New Phytol. 203, 592-606, (2014) DOI: 10.1111/nph.12817

Mitogen‐activated protein kinase (MAPK) cascades play key roles in plant immune signalling, and elucidating their regulatory functions requires the identification of the pathway‐specific substrates.We used yeast two‐hybrid interaction screens, in vitro kinase assays and mass spectrometry‐based phosphosite mapping to study a family of MAPK substrates. Site‐directed mutagenesis and promoter‐reporter fusion studies were performed to evaluate the impact of substrate phosphorylation on downstream signalling.A subset of the Arabidopsis thaliana VQ‐motif‐containing proteins (VQPs) were phosphorylated by the MAPKs MPK3 and MPK6, and renamed MPK3/6‐targeted VQPs (MVQs). When plant protoplasts (expressing these MVQs) were treated with the flagellin‐derived peptide flg22, several MVQs were destabilized in vivo. The MVQs interact with specific WRKY transcription factors. Detailed analysis of a representative member of the MVQ subset, MVQ1, indicated a negative role in WRKY‐mediated defence gene expression – with mutation of the VQ‐motif abrogating WRKY binding and causing mis‐regulation of defence gene expression.We postulate the existence of a variety of WRKY‐VQP‐containing transcriptional regulatory protein complexes that depend on spatio‐temporal VQP and WRKY expression patterns. Defence gene transcription can be modulated by changing the composition of these complexes – in part – through MAPK‐mediated VQP degradation.
Publications

Molendijk, A. J.; Ruperti, B.; Singh, M. K.; Dovzhenko, A.; Ditengou, F. A.; Milia, M.; Westphal, L.; Rosahl, S.; Soellick, T.-R.; Uhrig, J.; Weingarten, L.; Huber, M.; Palme, K.; A cysteine-rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors Plant J. 53, 909-923, (2008) DOI: 10.1111/j.1365-313X.2007.03384.x

In plants, Rop/Rac GTPases have emerged as central regulators of diverse signalling pathways in plant growth and pathogen defence. When active, they interact with a wide range of downstream effectors. Using yeast two‐hybrid screening we have found three previously uncharacterized receptor‐like protein kinases to be Rop GTPase‐interacting molecules: a cysteine‐rich receptor kinase, named NCRK, and two receptor‐like cytosolic kinases from the Arabidopsis RLCK‐VIb family, named RBK1 and RBK2. Uniquely for Rho‐family small GTPases, plant Rop GTPases were found to interact directly with the protein kinase domains. Rop4 bound NCRK preferentially in the GTP‐bound conformation as determined by flow cytometric fluorescence resonance energy transfer measurements in insect cells. The kinase RBK1 did not phosphorylate Rop4 in vitro , suggesting that the protein kinases are targets for Rop signalling. Bimolecular fluorescence complementation assays demonstrated that Rop4 interacted in vivo with NCRK and RBK1 at the plant plasma membrane. In Arabidopsis protoplasts, NCRK was hyperphosphorylated and partially co‐localized with the small GTPase RabF2a in endosomes. Gene expression analysis indicated that the single‐copy NCRK gene was relatively upregulated in vasculature, especially in developing tracheary elements. The seven Arabidopsis RLCK‐VIb genes are ubiquitously expressed in plant development, and highly so in pollen, as in case of RBK2 . We show that the developmental context of RBK1 gene expression is predominantly associated with vasculature and is also locally upregulated in leaves exposed to Phytophthora infestans and Botrytis cinerea pathogens. Our data indicate the existence of cross‐talk between Rop GTPases and specific receptor‐like kinases through direct molecular interaction.
IPB Mainnav Search