jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 5 of 5.

Publications

Landgraf, R.; Smolka, U.; Altmann, S.; Eschen-Lippold, L.; Senning, M.; Sonnewald, S.; Weigel, B.; Frolova, N.; Strehmel, N.; Hause, G.; Scheel, D.; Böttcher, C.; Rosahl, S.; The ABC Transporter ABCG1 Is Required for Suberin Formation in Potato Tuber Periderm Plant Cell 26, 3403-3415, (2014) DOI: 10.1105/tpc.114.124776

The lipid biopolymer suberin plays a major role as a barrier both at plant-environment interfaces and in internal tissues, restricting water and nutrient transport. In potato (Solanum tuberosum), tuber integrity is dependent on suberized periderm. Using microarray analyses, we identified ABCG1, encoding an ABC transporter, as a gene responsive to the pathogen-associated molecular pattern Pep-13. Further analyses revealed that ABCG1 is expressed in roots and tuber periderm, as well as in wounded leaves. Transgenic ABCG1-RNAi potato plants with downregulated expression of ABCG1 display major alterations in both root and tuber morphology, whereas the aerial part of the ABCG1-RNAi plants appear normal. The tuber periderm and root exodermis show reduced suberin staining and disorganized cell layers. Metabolite analyses revealed reduction of esterified suberin components and hyperaccumulation of putative suberin precursors in the tuber periderm of RNA interference plants, suggesting that ABCG1 is required for the export of suberin components.
Publications

Eschen-Lippold, L.; Altmann, S.; Gebhardt, C.; Göbel, C.; Feussner, I.; Rosahl, S.; Oxylipins are not required for R gene-mediated resistance in potato Eur. J. Plant Pathol. 127, 437-442, (2010) DOI: 10.1007/s10658-010-9621-1

The role of 9- and 13-lipoxygenase-derived oxylipins for race-cultivar-specific resistance in potato was analyzed by expressing RNA interference constructs against oxylipin biosynthetic genes in transgenic potato plants carrying the resistance gene R1 against Phytophthora infestans. Down-regulation of 9-lipoxygenase expression resulted in highly reduced levels of 9-hydroxyoctadecatrienoic acid after treatment with the pathogen-associated molecular pattern Pep-13. However, neither 9-lipoxygenase nor 9-divinyl ether synthase RNAi plants exhibited alterations in their resistance to P. infestans. Similarly, successful down-regulation of transcript accumulation of the 13-lipoxygenase pathway genes encoding allene oxide cyclase, 12-oxophytodienoic acid reductase 3 and the jasmonic acid receptor coronatine-insensitive 1 resulted in highly reduced levels of jasmonic acid after Pep-13 treatment. Race-cultivar-specific resistance, however, was not lost in these plants. Our results suggest that neither 9-lipoxygenase-derived oxylipins nor jasmonic acid are required for R-gene-mediated resistance in potato. Importantly, in tobacco, the silencing of 9-lipoxygenase expression was previously demonstrated to suppress race-cultivar-specific resistance. Thus, we conclude a differential requirement of oxylipins for R-gene-mediated resistance in different solanaceous plants.
Publications

Eschen-Lippold, L.; Altmann, S.; Rosahl, S.; DL-β-Aminobutyric Acid–Induced Resistance of Potato Against Phytophthora infestans Requires Salicylic Acid but Not Oxylipins Mol. Plant Microbe Interact. 23, 585-592, (2010) DOI: 10.1094/MPMI-23-5-0585

Inducing systemic resistance responses in crop plants is a promising alternative way of disease management. To understand the underlying signaling events leading to induced resistance, functional analyses of plants defective in defined signaling pathway steps are required. We used potato, one of the economically most-important crop plants worldwide, to examine systemic resistance against the devastating late blight pathogen Phytophthora infestans, induced by treatment with dl-β-aminobutyric acid (BABA). Transgenic plants impaired in either the 9-lipoxygenase pathway, which produces defense-related compounds, or the 13-lipoxygenase pathway, which generates jasmonic acid–derived signals, expressed wild-type levels of BABA-induced resistance. Plants incapable of accumulating salicylic acid (SA), on the other hand, failed to mount this type of induced resistance. Consistently, treatment of these plants with the SA analog 2,6-dichloroisonicotinic acid restored BABA-induced resistance. Together, these results demonstrate the indispensability of a functional SA pathway for systemic resistance in potato induced by BABA.
Publications

Halim, V. A.; Altmann, S.; Ellinger, D.; Eschen-Lippold, L.; Miersch, O.; Scheel, D.; Rosahl, S.; PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid Plant J. 57, 230-242, (2009) DOI: 10.1111/j.1365-313X.2008.03688.x

To elucidate the molecular mechanisms underlying pathogen‐associated molecular pattern (PAMP)‐induced defense responses in potato (Solanum tuberosum ), the role of the signaling compounds salicylic acid (SA) and jasmonic acid (JA) was analyzed. Pep‐13, a PAMP from Phytophthora , induces the accumulation of SA, JA and hydrogen peroxide, as well as the activation of defense genes and hypersensitive‐like cell death. We have previously shown that SA is required for Pep‐13‐induced defense responses. To assess the importance of JA, RNA interference constructs targeted at the JA biosynthetic genes, allene oxide cyclase and 12‐oxophytodienoic acid reductase, were expressed in transgenic potato plants. In addition, expression of the F‐box protein COI1 was reduced by RNA interference. Plants expressing the RNA interference constructs failed to accumulate the respective transcripts in response to wounding or Pep‐13 treatment, neither did they contain significant amounts of JA after elicitation. In response to infiltration of Pep‐13, the transgenic plants exhibited a highly reduced accumulation of reactive oxygen species as well as reduced hypersensitive cell death. The ability of the JA‐deficient plants to accumulate SA suggests that SA accumulation is independent or upstream of JA accumulation. These data show that PAMP responses in potato require both SA and JA and that, in contrast to Arabidopsis, these compounds act in the same signal transduction pathway. Despite their inability to fully respond to PAMP treatment, the transgenic RNA interference plants are not altered in their basal defense against Phytophthora infestans .
Publications

Halim, V. A.; Eschen-Lippold, L.; Altmann, S.; Birschwilks, M.; Scheel, D.; Rosahl, S.; Salicylic Acid Is Important for Basal Defense of Solanum tuberosum Against Phytophthora infestans Mol. Plant Microbe Interact. 20, 1346-1352, (2007) DOI: 10.1094/MPMI-20-11-1346

The importance of the signaling compound salicylic acid for basal defense of potato (Solanum tuberosum L. cv. Désirée) against Phytophthora infestans, the causal agent of late blight disease, was assessed using transgenic NahG potato plants which are unable to accumulate salicylic acid. Although the size of lesions caused by P. infestans was not significantly different in wild-type and transgenic NahG plants, real-time polymerase chain reaction analyses revealed a drastic enhancement of pathogen growth in potato plants depleted of salicylic acid. Increased susceptibility of NahG plants correlated with compromised callose formation and reduced early defense gene expression. NahG plants pretreated with the salicylic acid analog 2,6-dichloro-isonicotinic acid allowed pathogen growth to a similar extent as did wild-type plants, indicating that salicylic acid is an important compound required for basal defense of potato against P. infestans.
IPB Mainnav Search