jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 3 of 3.

Publications

Widjaja, I.; Naumann, K.; Roth, U.; Wolf, N.; Mackey, D.; Dangl, J. L.; Scheel, D.; Lee, J.; Combining subproteome enrichment and Rubisco depletion enables identification of low abundance proteins differentially regulated during plant defense Proteomics 9, 138-147, (2009) DOI: 10.1002/pmic.200800293

Transgenic Arabidopsis conditionally expressing the bacterial avrRpm1 type III effector under the control of a dexamethasone‐responsive promoter were used for proteomics studies. This model system permits study of an individual effector without interference from additional bacterial components. Coupling of different prefractionation approaches to high resolution 2‐DE facilitated the discovery of low abundance proteins – enabling the identification of proteins that have escaped detection in similar experiments. A total of 34 differentially regulated protein spots were identified. Four of these (a remorin, a protein phosphatase 2C (PP2C), an RNA‐binding protein, and a C2‐domain‐containing protein) are potentially early signaling components in the interaction between AvrRpm1 and the cognate disease resistance gene product, resistance to Pseudomonas syringae pv. maculicola 1 (RPM1). For the remorin and RNA‐binding protein, involvement of PTM and post‐transcriptional regulation are implicated, respectively.
Publications

Roth, U.; von Roepenack-Lahaye, E.; Clemens, S.; Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+ J. Exp. Bot. 57, 4003-4013, (2006) DOI: 10.1093/jxb/erl170

Cadmium is a major environmental pollutant that enters human food via accumulation in crop plants. Responses of plants to cadmium exposure—which directly influence accumulation rates—are not well understood. In general, little is known about stress-elicited changes in plants at the proteome level. Alterations in the root proteome of hydroponically grown Arabidopsis thaliana plants treated with 10 μM Cd2+ for 24 h are reported here. These conditions trigger the synthesis of phytochelatins (PCs), glutathione-derived metal-binding peptides, shown here as PC2 accumulation. Two-dimensional gel electrophoresis using different pH gradients in the first dimension detected on average ∼1100 spots per gel type. Forty-one spots indicated significant changes in protein abundance upon Cd2+ treatment. Seventeen proteins found in 25 spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Selected results were independently confirmed by western analysis and selective enrichment of a protein family (glutathione S-transferases) through affinity chromatography. Most of the identified proteins belong to four different classes: metabolic enzymes such as ATP sulphurylase, glycine hydroxymethyltransferase, and trehalose-6-phosphate phosphatase; glutathione S-transferases; latex allergen-like proteins; and unknown proteins. These results represent a basis for reverse genetics studies to better understand plant responses to toxic metal exposure and to the generation of internal sinks for reduced sulphur.
Publications

von Roepenack-Lahaye, E.; Degenkolb, T.; Zerjeski, M.; Franz, M.; Roth, U.; Wessjohann, L.; Schmidt, J.; Scheel, D.; Clemens, S.; Profiling of Arabidopsis Secondary Metabolites by Capillary Liquid Chromatography Coupled to Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry Plant Physiol. 134, 548-559, (2004) DOI: 10.1104/pp.103.032714

Large-scale metabolic profiling is expected to develop into an integral part of functional genomics and systems biology. The metabolome of a cell or an organism is chemically highly complex. Therefore, comprehensive biochemical phenotyping requires a multitude of analytical techniques. Here, we describe a profiling approach that combines separation by capillary liquid chromatography with the high resolution, high sensitivity, and high mass accuracy of quadrupole time-of-flight mass spectrometry. About 2,000 different mass signals can be detected in extracts of Arabidopsis roots and leaves. Many of these originate from Arabidopsis secondary metabolites. Detection based on retention times and exact masses is robust and reproducible. The dynamic range is sufficient for the quantification of metabolites. Assessment of the reproducibility of the analysis showed that biological variability exceeds technical variability. Tools were optimized or established for the automatic data deconvolution and data processing. Subtle differences between samples can be detected as tested with the chalcone synthase deficient tt4 mutant. The accuracy of time-of-flight mass analysis allows to calculate elemental compositions and to tentatively identify metabolites. In-source fragmentation and tandem mass spectrometry can be used to gain structural information. This approach has the potential to significantly contribute to establishing the metabolome of Arabidopsis and other model systems. The principles of separation and mass analysis of this technique, together with its sensitivity and resolving power, greatly expand the range of metabolic profiling.
IPB Mainnav Search