jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 2 of 2.

Publications

Sopeña-Torres, S.; Jordá, L.; Sánchez-Rodríguez, C.; Miedes, E.; Escudero, V.; Swami, S.; López, G.; Piślewska-Bednarek, M.; Lassowskat, I.; Lee, J.; Gu, Y.; Haigis, S.; Alexander, D.; Pattathil, S.; Muñoz-Barrios, A.; Bednarek, P.; Somerville, S.; Schulze-Lefert, P.; Hahn, M. G.; Scheel, D.; Molina, A.; YODA MAP3K kinase regulates plant immune responses conferring broad-spectrum disease resistance New Phytol. 218, 661-680, (2018) DOI: 10.1111/nph.15007

Mitogen‐activated protein kinases (MAPKs) cascades play essential roles in plants by transducing developmental cues and environmental signals into cellular responses. Among the latter are microbe‐associated molecular patterns perceived by pattern recognition receptors (PRRs), which trigger immunity.We found that YODA (YDA) – a MAPK kinase kinase regulating several Arabidopsis developmental processes, like stomatal patterning – also modulates immune responses. Resistance to pathogens is compromised in yda alleles, whereas plants expressing the constitutively active YDA (CA‐YDA) protein show broad‐spectrum resistance to fungi, bacteria, and oomycetes with different colonization modes. YDA functions in the same pathway as ERECTA (ER) Receptor‐Like Kinase, regulating both immunity and stomatal patterning.ER‐YDA‐mediated immune responses act in parallel to canonical disease resistance pathways regulated by phytohormones and PRRs. CA‐YDA plants exhibit altered cell‐wall integrity and constitutively express defense‐associated genes, including some encoding putative small secreted peptides and PRRs whose impairment resulted in enhanced susceptibility phenotypes. CA‐YDA plants show strong reprogramming of their phosphoproteome, which contains protein targets distinct from described MAPKs substrates.Our results suggest that, in addition to stomata development, the ER‐YDA pathway regulates an immune surveillance system conferring broad‐spectrum disease resistance that is distinct from the canonical pathways mediated by described PRRs and defense Hormones.
Publications

Lipka, V.; Dittgen, J.; Bednarek, P.; Bhat, R.; Wiermer, M.; Stein, M.; Landtag, J.; Brandt, W.; Rosahl, S.; Scheel, D.; Llorente, F.; Molina, A.; Parker, J.; Somerville, S.; Schulze-Lefert, P.; Pre- and Postinvasion Defenses Both Contribute to Nonhost Resistance in Arabidopsis Science 310, 1180-1183, (2005) DOI: 10.1126/science.1119409

Nonhost resistance describes the immunity of an entire plant species against nonadapted pathogen species. We report that Arabidopsis PEN2 restricts pathogen entry of two ascomycete powdery mildew fungi that in nature colonize grass and pea species. The PEN2 glycosyl hydrolase localizes to peroxisomes and acts as a component of an inducible preinvasion resistance mechanism. Postinvasion fungal growth is blocked by a separate resistance layer requiring the EDS1-PAD4-SAG101 signaling complex, which is known to function in basal and resistance (R) gene–triggered immunity. Concurrent impairment of pre- and postinvasion resistance renders Arabidopsis a host for both nonadapted fungi.
IPB Mainnav Search