jump to searchjump to navigationjump to content

Displaying results 1 to 8 of 8.

Publications

Ziegler, J.; Schmidt, S.; Chutia, R.; Müller, J.; Böttcher, C.; Strehmel, N.; Scheel, D.; Abel, S.; Non-targeted profiling of semi-polar metabolites in Arabidopsis root exudates uncovers a role for coumarin secretion and lignification during the local response to phosphate limitation J. Exp. Bot. 67, 1421-1432, (2016) DOI: 10.1093/jxb/erv539

Plants have evolved two major strategies to cope with phosphate (Pi) limitation. The systemic response, mainly comprising increased Pi uptake and metabolic adjustments for more efficient Pi use, and the local response, enabling plants to explore Pi-rich soil patches by reorganization of the root system architecture. Unlike previous reports, this study focused on root exudation controlled by the local response to Pi deficiency. To approach this, a hydroponic system separating the local and systemic responses was developed. Arabidopsis thaliana genotypes exhibiting distinct sensitivities to Pi deficiency could be clearly distinguished by their root exudate composition as determined by non-targeted reversed-phase ultraperformance liquid chromatography electrospray ionization quadrupole-time-of-flight mass spectrometry metabolite profiling. Compared with wild-type plants or insensitive low phosphate root 1 and 2 (lpr1 lpr2) double mutant plants, the hypersensitive phosphate deficiency response 2 (pdr2) mutant exhibited a reduced number of differential features in root exudates after Pi starvation, suggesting the involvement of PDR2-encoded P5-type ATPase in root exudation. Identification and analysis of coumarins revealed common and antagonistic regulatory pathways between Pi and Fe deficiency-induced coumarin secretion. The accumulation of oligolignols in root exudates after Pi deficiency was inversely correlated with Pi starvation-induced lignification at the root tips. The strongest oligolignol accumulation in root exudates was observed for the insensitive lpr1 lpr2 double mutant, which was accompanied by the absence of Pi deficiency-induced lignin deposition, suggesting a role of LPR ferroxidases in lignin polymerization during Pi starvation.
Publications

Mönchgesang, S.; Strehmel, N.; Trutschel, D.; Westphal, L.; Neumann, S.; Scheel, D.; Plant-to-Plant Variability in Root Metabolite Profiles of 19 Arabidopsis thaliana Accessions Is Substance-Class-Dependent Int. J. Mol. Sci. 17, 1565, (2016) DOI: 10.3390/ijms17091565

Natural variation of secondary metabolism between different accessions of Arabidopsis thaliana (A. thaliana) has been studied extensively. In this study, we extended the natural variation approach by including biological variability (plant-to-plant variability) and analysed root metabolic patterns as well as their variability between plants and naturally occurring accessions. To screen 19 accessions of A. thaliana, comprehensive non-targeted metabolite profiling of single plant root extracts was performed using ultra performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS). Linear mixed models were applied to dissect the total observed variance. All metabolic profiles pointed towards a larger plant-to-plant variability than natural variation between accessions and variance of experimental batches. Ratios of plant-to-plant to total variability were high and distinct for certain secondary metabolites. None of the investigated accessions displayed a specifically high or low biological variability for these substance classes. This study provides recommendations for future natural variation analyses of glucosinolates, flavonoids, and phenylpropanoids and also reference data for additional substance classes.
Publications

Mönchgesang, S.; Strehmel, N.; Schmidt, S.; Westphal, L.; Taruttis, F.; Müller, E.; Herklotz, S.; Neumann, S.; Scheel, D.; Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data Sci. Rep. 6, 29033, (2016) DOI: 10.1038/srep29033

Many metabolomics studies focus on aboveground parts of the plant, while metabolism within roots and the chemical composition of the rhizosphere, as influenced by exudation, are not deeply investigated. In this study, we analysed exudate metabolic patterns of Arabidopsis thaliana and their variation in genetically diverse accessions. For this project, we used the 19 parental accessions of the Arabidopsis MAGIC collection. Plants were grown in a hydroponic system, their exudates were harvested before bolting and subjected to UPLC/ESI-QTOF-MS analysis. Metabolite profiles were analysed together with the genome sequence information. Our study uncovered distinct metabolite profiles for root exudates of the 19 accessions. Hierarchical clustering revealed similarities in the exudate metabolite profiles, which were partly reflected by the genetic distances. An association of metabolite absence with nonsense mutations was detected for the biosynthetic pathways of an indolic glucosinolate hydrolysis product, a hydroxycinnamic acid amine and a flavonoid triglycoside. Consequently, a direct link between metabolic phenotype and genotype was detected without using segregating populations. Moreover, genomics can help to identify biosynthetic enzymes in metabolomics experiments. Our study elucidates the chemical composition of the rhizosphere and its natural variation in A. thaliana, which is important for the attraction and shaping of microbial communities.
Publications

Hettwer, K.; Böttcher, C.; Frolov, A.; Mittasch, J.; Albert, A.; von Roepenack-Lahaye, E.; Strack, D.; Milkowski, C.; Dynamic metabolic changes in seeds and seedlings of Brassica napus (oilseed rape) suppressing UGT84A9 reveal plasticity and molecular regulation of the phenylpropanoid pathway Phytochemistry 124, 46-57, (2016) DOI: 10.1016/j.phytochem.2016.01.014

In Brassica napus, suppression of the key biosynthetic enzyme UDP-glucose:sinapic acid glucosyltransferase (UGT84A9) inhibits the biosynthesis of sinapine (sinapoylcholine), the major phenolic component of seeds. Based on the accumulation kinetics of a total of 158 compounds (110 secondary and 48 primary metabolites), we investigated how suppression of the major sink pathway of sinapic acid impacts the metabolome of developing seeds and seedlings. In UGT84A9-suppressing (UGT84A9i) lines massive alterations became evident in late stages of seed development affecting the accumulation levels of 58 secondary and 7 primary metabolites. UGT84A9i seeds were characterized by decreased amounts of various hydroxycinnamic acid (HCA) esters, and increased formation of sinapic and syringic acid glycosides. This indicates glycosylation and β-oxidation as metabolic detoxification strategies to bypass intracellular accumulation of sinapic acid. In addition, a net loss of sinapic acid upon UGT84A9 suppression may point to a feedback regulation of HCA biosynthesis. Surprisingly, suppression of UGT84A9 under control of the seed-specific NAPINC promoter was maintained in cotyledons during the first two weeks of seedling development and associated with a reduced and delayed transformation of sinapine into sinapoylmalate. The lack of sinapoylmalate did not interfere with plant fitness under UV-B stress. Increased UV-B radiation triggered the accumulation of quercetin conjugates whereas the sinapoylmalate level was not affected.
Publications

Strehmel, N.; Mönchgesang, S.; Herklotz, S.; Krüger, S.; Ziegler, J.; Scheel, D.; Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana Int. J. Mol. Sci. 17, 1091, (2016) DOI: 10.3390/ijms17071091

Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana’s roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes
Publications

Treutler, H.; Tsugawa, H.; Porzel, A.; Gorzolka, K.; Tissier, A.; Neumann, S.; Balcke, G. U.; Discovering Regulated Metabolite Families in Untargeted Metabolomics Studies Anal. Chem. 88, 8082-8090, (2016) DOI: 10.1021/acs.analchem.6b01569

The identification of metabolites by mass spectrometry constitutes a major bottleneck which considerably limits the throughput of metabolomics studies in biomedical or plant research. Here, we present a novel approach to analyze metabolomics data from untargeted, data-independent LC-MS/MS measurements. By integrated analysis of MS1 abundances and MS/MS spectra, the identification of regulated metabolite families is achieved. This approach offers a global view on metabolic regulation in comparative metabolomics. We implemented our approach in the web application “MetFamily”, which is freely available at http://msbi.ipb-halle.de/MetFamily/. MetFamily provides a dynamic link between the patterns based on MS1-signal intensity and the corresponding structural similarity at the MS/MS level. Structurally related metabolites are annotated as metabolite families based on a hierarchical cluster analysis of measured MS/MS spectra. Joint examination with principal component analysis of MS1 patterns, where this annotation is preserved in the loadings, facilitates the interpretation of comparative metabolomics data at the level of metabolite families. As a proof of concept, we identified two trichome-specific metabolite families from wild-type tomato Solanum habrochaites LA1777 in a fully unsupervised manner and validated our findings based on earlier publications and with NMR.
Publications

Dobritzsch, M.; Lübken, T.; Eschen-Lippold, L.; Gorzolka, K.; Blum, E.; Matern, A.; Marillonnet, S.; Böttcher, C.; Dräger, B.; Rosahl, S.; MATE Transporter-Dependent Export of Hydroxycinnamic Acid Amides Plant Cell 28, 583-596, (2016) DOI: 10.1105/tpc.15.00706

The ability of Arabidopsis thaliana to successfully prevent colonization by Phytophthora infestans, the causal agent of late blight disease of potato (Solanum tuberosum), depends on multilayered defense responses. To address the role of surface-localized secondary metabolites for entry control, droplets of a P. infestans zoospore suspension, incubated on Arabidopsis leaves, were subjected to untargeted metabolite profiling. The hydroxycinnamic acid amide coumaroylagmatine was among the metabolites secreted into the inoculum. In vitro assays revealed an inhibitory activity of coumaroylagmatine on P. infestans spore germination. Mutant analyses suggested a requirement of the p-coumaroyl-CoA:agmatine N4-p-coumaroyl transferase ACT for the biosynthesis and of the MATE transporter DTX18 for the extracellular accumulation of coumaroylagmatine. The host plant potato is not able to efficiently secrete coumaroylagmatine. This inability is overcome in transgenic potato plants expressing the two Arabidopsis genes ACT and DTX18. These plants secrete agmatine and putrescine conjugates to high levels, indicating that DTX18 is a hydroxycinnamic acid amide transporter with a distinct specificity. The export of hydroxycinnamic acid amides correlates with a decreased ability of P. infestans spores to germinate, suggesting a contribution of secreted antimicrobial compounds to pathogen defense at the leaf surface.
Publications

Brömme, T.; Schmitz, C.; Moszner, N.; Burtscher, P.; Strehmel, N.; Strehmel, B.; Photochemical Oxidation of NIR Photosensitizers in the Presence of Radical Initiators and Their Prospective Use in Dental Applications ChemistrySelect 1, 524-532, (2016) DOI: 10.1002/slct.201600048

Photochemical oxidation of near infrared (NIR) photosensitizers in the presence of diaryl iodonium salts bearing either bis(trifluoromethylsulfonyl)imide or hexafluorophosphate was investigated by exposure with NIR LEDs emitting either at 790 nm, 830 nm, 850 nm or 870 nm. Four different cyanines with barbituryl group at the meso position exhibit similar absorption in the NIR. These photosensitizers initiate in combination with diaryliodonium salts radical photopolymerization of dental composites with the focus to cure large thicknesses. Furthermore, the mixture comprising the cyanine and the iodonium salt was used to generate brown color in dental composites on demand. This required to understand the mechanism of dye decomposition in more detail applying exposure kinetics and a coupling of Ultra Performance Liquid Chromatography (UPLC) with mass spectrometry (MS) to analyze the photoproducts formed. Data showed cleavage of the polymethine chain at typical positions in case of the oxidized species. These were formed as result of electron transfer between the excited state of the photosensitizer and the iodonium salt. UPLC‐MS experiments additionally indicated a certain sensitivity of the system upon adding of acids and radicals generated by thermal treatment of azobisisobutyronitrile (AIBN). Thus, treatment of the photoinitiator composition led almost to the same products no matter the system was either exposed with NIR light or treated with acids or radicals generated by thermal decomposition of AIBN. These findings helped to understand the large curing depth of 14 mm upon NIR exposure at 850 nm and the brown color formed.
IPB Mainnav Search