jump to searchjump to navigationjump to content

Sort by: Year Type of publication

Displaying results 1 to 3 of 3.

Publications

Kuhl, C.; Tautenhahn, R.; Böttcher, C.; Larson, T. R.; Neumann, S.; CAMERA: An Integrated Strategy for Compound Spectra Extraction and Annotation of Liquid Chromatography/Mass Spectrometry Data Sets Anal. Chem. 84, 283-289, (2012) DOI: 10.1021/ac202450g

Liquid chromatography coupled to mass spectrometry is routinely used for metabolomics experiments. In contrast to the fairly routine and automated data acquisition steps, subsequent compound annotation and identification require extensive manual analysis and thus form a major bottleneck in data interpretation. Here we present CAMERA, a Bioconductor package integrating algorithms to extract compound spectra, annotate isotope and adduct peaks, and propose the accurate compound mass even in highly complex data. To evaluate the algorithms, we compared the annotation of CAMERA against a manually defined annotation for a mixture of known compounds spiked into a complex matrix at different concentrations. CAMERA successfully extracted accurate masses for 89.7% and 90.3% of the annotatable compounds in positive and negative ion modes, respectively. Furthermore, we present a novel annotation approach that combines spectral information of data acquired in opposite ion modes to further improve the annotation rate. We demonstrate the utility of CAMERA in two different, easily adoptable plant metabolomics experiments, where the application of CAMERA drastically reduced the amount of manual analysis.
Publications

Tautenhahn, R.; Böttcher, C.; Neumann, S.; Highly sensitive feature detection for high resolution LC/MS BMC Bioinformatics 9, 504, (2008) DOI: 10.1186/1471-2105-9-504

BackgroundLiquid chromatography coupled to mass spectrometry (LC/MS) is an important analytical technology for e.g. metabolomics experiments. Determining the boundaries, centres and intensities of the two-dimensional signals in the LC/MS raw data is called feature detection. For the subsequent analysis of complex samples such as plant extracts, which may contain hundreds of compounds, corresponding to thousands of features – a reliable feature detection is mandatory.ResultsWe developed a new feature detection algorithm centWave for high-resolution LC/MS data sets, which collects regions of interest (partial mass traces) in the raw-data, and applies continuous wavelet transformation and optionally Gauss-fitting in the chromatographic domain. We evaluated our feature detection algorithm on dilution series and mixtures of seed and leaf extracts, and estimated recall, precision and F-score of seed and leaf specific features in two experiments of different complexity.ConclusionThe new feature detection algorithm meets the requirements of current metabolomics experiments. centWave can detect close-by and partially overlapping features and has the highest overall recall and precision values compared to the other algorithms, matchedFilter (the original algorithm of XCMS) and the centroidPicker from MZmine. The centWave algorithm was integrated into the Bioconductor R-package XCMS and is available from http://www.bioconductor.org/
Books and chapters

Tautenhahn, R.; Böttcher, C.; Neumann, S.; Annotation of LC/ESI-MS Mass Signals Lecture Notes in Computer Science 4414, 371-380, (2007) ISBN: 978-3-540-71233-6 DOI: 10.1007/978-3-540-71233-6_29

Mass spectrometry is the work-horse technology of the emerging field of metabolomics. The identification of mass signals remains the largest bottleneck for a non-targeted approach: due to the analytical method, each metabolite in a complex mixture will give rise to a number of mass signals. In contrast to GC/MS measurements, for soft ionisation methods such as ESI-MS there are no extensive libraries of reference spectra or established deconvolution methods. We present a set of annotation methods which aim to group together mass signals measured from a single metabolite, based on rules for mass differences and peak shape comparison.Availability: The software and documentation is available as an R package on http://msbi.ipb-halle.de/
IPB Mainnav Search