jump to searchjump to navigationjump to content

Sort by: Year Type of publication

Displaying results 1 to 2 of 2.

Publications

Witzel, K.; Strehmel, N.; Baldermann, S.; Neugart, S.; Becker, Y.; Becker, M.; Berger, B.; Scheel, D.; Grosch, R.; Schreiner, M.; Ruppel, S.; Arabidopsis thaliana root and root exudate metabolism is altered by the growth-promoting bacterium Kosakonia radicincitans DSM 16656T Plant Soil 419, 557-573, (2017) DOI: 10.1007/s11104-017-3371-1

AimsPlant growth-promoting bacteria (PGPB) affect host physiological processes in various ways. This study aims at elucidating the dependence of bacterial-induced growth promotion on the plant genotype and characterizing plant metabolic adaptations to PGPB.MethodsEighteen Arabidopsis thaliana accessions were inoculated with the PGPB strain Kosakonia radicincitans DSM 16656T. Colonisation pattern was assessed by enhanced green fluorescent protein (eGFP)-tagged K. radicincitans in three A. thaliana accessions differing in their growth response. Metabolic impact of bacterial colonisation was determined for the best responding accession by profiling distinct classes of plant secondary metabolites and root exudates.ResultsInoculation of 18 A. thaliana accessions resulted in a wide range of growth responses, from repression to enhancement. Testing the bacterial colonisation of three accessions did not reveal a differential pattern. Profiling of plant secondary metabolites showed a differential accumulation of glucosinolates, phenylpropanoids and carotenoids in roots. Analysis of root exudates demonstrated that primary and secondary metabolites were predominantly differentially depleted by bacterial inoculation.ConclusionsThe plant genotype controls the bacterial growth promoting traits. Levels of lutein and β-carotene were elevated in inoculated roots. Supplementing a bacterial suspension with β-carotene increased bacterial growth, while this was not the case when lutein was applied, indicating that β-carotene could be a positive regulator of plant growth promotion.
Publications

Buhtz, A.; Witzel, K.; Strehmel, N.; Ziegler, J.; Abel, S.; Grosch, R.; Perturbations in the Primary Metabolism of Tomato and Arabidopsis thaliana Plants Infected with the Soil-Borne Fungus Verticillium dahliae PLOS ONE 10, e0138242, (2015) DOI: 10.1371/journal.pone.0138242

The hemibiotrophic soil-borne fungus Verticillium dahliae is a major pathogen of a number of economically important crop species. Here, the metabolic response of both tomato and Arabidopsis thaliana to V. dahliae infection was analysed by first using non-targeted GC-MS profiling. The leaf content of both major cell wall components glucuronic acid and xylose was reduced in the presence of the pathogen in tomato but enhanced in A. thaliana. The leaf content of the two tricarboxylic acid cycle intermediates fumaric acid and succinic acid was increased in the leaf of both species, reflecting a likely higher demand for reducing equivalents required for defence responses. A prominent group of affected compounds was amino acids and based on the targeted analysis in the root, it was shown that the level of 12 and four free amino acids was enhanced by the infection in, respectively, tomato and A. thaliana, with leucine and histidine being represented in both host species. The leaf content of six free amino acids was reduced in the leaf tissue of diseased A. thaliana plants, while that of two free amino acids was raised in the tomato plants. This study emphasizes the role of primary plant metabolites in adaptive responses when the fungus has colonized the plant.
IPB Mainnav Search