jump to searchjump to navigationjump to content

Sort by: Year Type of publication

Displaying results 1 to 2 of 2.

Publications

Harada, E.; Kim, J.-A.; Meyer, A. J.; Hell, R.; Clemens, S.; Choi, Y.-E.; Expression Profiling of Tobacco Leaf Trichomes Identifies Genes for Biotic and Abiotic Stresses Plant Cell Physiol. 51, 1627-1637, (2010) DOI: 10.1093/pcp/pcq118

Nicotiana tabacum (tobacco) plants have short and long glandular trichomes. There is evidence that tobacco trichomes play several roles in the defense against biotic and abiotic stresses. cDNA libraries were constructed from control and cadmium (Cd)-treated leaf trichomes. Almost 2,000 expressed sequence tag (EST) cDNA clones were sequenced to analyze gene expression in control and Cd-treated leaf trichomes. Genes for stress response as well as for primary metabolism scored highly, indicating that the trichome is a biologically active and stress-responsive tissue. Reverse transcription–PCR (RT–PCR) analysis demonstrated that antipathogenic T-phylloplanin-like proteins, glutathione peroxidase and several classes of pathogenesis-related (PR) proteins were expressed specifically or dominantly in trichomes. Cysteine-rich PR proteins, such as non-specific lipid transfer proteins (nsLTPs) and metallocarboxypeptidase inhibitors, are candidates for the sequestration of metals. The expression of osmotin and thaumatin-like proteins was induced by Cd treatment in both leaves and trichomes. Confocal laser scanning microscopy (CLSM) showed that glutathione levels in tip cells of both long and short trichomes were higher than those in other types of leaf cells, indicating the presence of an active sulfur-dependent protective system in trichomes. Our results revealed that the trichome-specific transcriptome approach is a powerful tool to investigate the defensive functions of trichomes against both abiotic and biotic stress. Trichomes are shown to be an enriched source of useful genes for molecular breeding towards stress-tolerant plants.
Publications

Isaure, M.-P.; Sarret, G.; Harada, E.; Choi, Y.-E.; Marcus, M. A.; Fakra, S. C.; Geoffroy, N.; Pairis, S.; Susini, J.; Clemens, S.; Manceau, A.; Calcium promotes cadmium elimination as vaterite grains by tobacco trichomes Geochim. Cosmochim. Acta 74, 5817-5834, (2010) DOI: 10.1016/j.gca.2010.07.011

In tobacco plants, elimination of Zn and Cd via the production of Ca-containing grains at the top of leaf hairs, called trichomes, is a potent detoxification mechanism. This study examines how Cd is incorporated in these biominerals, and how calcium growth supplement modifies their nature. Scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX), microfocused X-ray diffraction (μ-XRD), and microfocused X-ray absorption near edge structure (μ-XANES) spectroscopy were used to image the morphology of the grains, identify the crystallized mineral phases, and speciate Cd, respectively. The mineralogy of the grains and chemical form of Cd varied with the amount of Ca. When tobacco plants were grown in a nutrient solution containing 25 μM Cd and low Ca supplement (Ca/Cd = 11 mol ratio), most of the grains were oblong-shaped and low-Cd-substituted calcite. When exposed to the same amount of Cd and high Ca supplement (Ca/Cd = 131 mol ratio), grains were more abundant and diverse in compositions, and in total more Cd was eliminated. Most grains in the high Ca/Cd experiment were round-shaped and composed predominantly of Cd-substituted vaterite, a usually metastable calcium carbonate polymorph, and subordinate calcite. Calcium oxalate and a Ca amorphous phase were detected occasionally in the two treatments, but were devoid of Cd. The biomineralization of cadmium and implications of results for Cd exposure of smokers and phytoremediation are discussed.
IPB Mainnav Search