zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Stoffwechsel- und Zellbiologie

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 15.

Publikation

Lohse, S.; Schliemann, W.; Ammer, C.; Kopka, J.; Strack, D.; Fester, T.; Organization and Metabolism of Plastids and Mitochondria in Arbuscular Mycorrhizal Roots of Medicago truncatula Plant Physiol. 139, 329-340, (2005) DOI: 10.1104/pp.105.061457

Colonization of root cortical cells by arbuscular mycorrhizal fungi leads to marked cytological changes of plastids and mitochondria. Plastids in particular are forming tubular extensions partially connecting individual organelles in a network-like way. These cytological changes correspond to an increased need for plastid and mitochondrial products during establishment and functioning of the symbiosis. The analysis of metabolite and transcript levels in mycorrhizal and nonmycorrhizal roots from Medicago truncatula revealed concomitant changes regarding a number of metabolic pathways. Our results indicate the activation of the mitochondrial tricarboxylic acid cycle and of plastid biosynthetic pathways producing fatty acids, amino acids, and apocarotenoids. These observations provide a general overview of structural and metabolic changes of plastids and mitochondria during colonization of root cortical cells by arbuscular mycorrhizal fungi.
Publikation

Liu, S.; Chen, K.; Schliemann, W.; Strack, D.; Isolation and identification of arctiin and arctigenin in leaves of burdock (Arctium lappa L.) by polyamide column chromatography in combination with HPLC-ESI[sol ]MS Phytochem. Anal. 16, 86-89, (2005) DOI: 10.1002/pca.816

A simple method involving polyamide column chromatography in combination with HPLC‐PAD and HPLC‐ESI[sol ]MS for isolating and identifying two kinds of lignans, arctiin and arctigenin, in the leaves of burdock (Arctium lappa L.) has been established. After extraction of burdock leaves with 80% methanol, the aqueous phase of crude extracts was partitioned between water and chloroform and the aqueous phase was fractionated on a polyamide glass column. The fraction, eluting with 100% methanol, was concentrated and gave a white precipitate at 4°C from which two main compounds were purified by semi‐preparative HPLC. In comparison with the UV and ESI‐MS spectra and the HPLC retention time of authentic standards, the compounds were determined to be arctiin and arctigenin. The extraction[sol ]separation technique was validated using an internal standard method. Copyright © 2005 John Wiley & Sons, Ltd.
Publikation

Kramell, R.; Schmidt, J.; Herrmann, G.; Schliemann, W.; N-(Jasmonoyl)tyrosine-Derived Compounds from Flowers of Broad Beans (Vicia faba) J. Nat. Prod. 68, 1345-1349, (2005) DOI: 10.1021/np0501482

Two new amide-linked conjugates of jasmonic acid, N-[(3R,7R)-(−)-jasmonoyl]-(S)-dopa (3) and N-[(3R,7R)-(−)-jasmonoyl]-dopamine (5), were isolated in addition to the known compound N-[(3R,7R)-(−)-jasmonoyl]-(S)-tyrosine (2) from the methanolic extract of flowers of broad bean (Vicia faba). Their structures were proposed on the basis of spectroscopic data (LC-MS/MS) and chromatographic properties on reversed and chiral phases and confirmed by partial syntheses. Furthermore, tyrosine conjugates of two cucurbic acid isomers (7, 8) were detected and characterized by LC-MS. Crude enzyme preparations from flowers of V. faba hydroxylated both (±)-2 and N-[(3R,7R/3S,7S)-(−)-jasmonoyl]tyramine [(±)-4] to (±)-3 and (±)-5, respectively, suggesting a possible biosynthetic relationship. In addition, a commercial tyrosinase (mushroom) and a tyrosinase-containing extract from hairy roots of red beet exhibited the same catalytic properties, but with different substrate specificities. The conjugates (±)-2, (±)-3, (±)-4, and (±)-5 exhibited in a bioassay low activity to elicit alkaloid formation in comparison to free (±)-jasmonic acid [(±)-1].
Publikation

Isayenkov, S.; Mrosk, C.; Stenzel, I.; Strack, D.; Hause, B.; Suppression of Allene Oxide Cyclase in Hairy Roots of Medicago truncatula Reduces Jasmonate Levels and the Degree of Mycorrhization with Glomus intraradices Plant Physiol. 139, 1401-1410, (2005) DOI: 10.1104/pp.105.069054

During the symbiotic interaction between Medicago truncatula and the arbuscular mycorrhizal (AM) fungus Glomus intraradices, an endogenous increase in jasmonic acid (JA) occurs. Two full-length cDNAs coding for the JA-biosynthetic enzyme allene oxide cyclase (AOC) from M. truncatula, designated as MtAOC1 and MtAOC2, were cloned and characterized. The AOC protein was localized in plastids and found to occur constitutively in all vascular tissues of M. truncatula. In leaves and roots, MtAOCs are expressed upon JA application. Enhanced expression was also observed during mycorrhization with G. intraradices. A partial suppression of MtAOC expression was achieved in roots following transformation with Agrobacterium rhizogenes harboring the MtAOC1 cDNA in the antisense direction under control of the cauliflower mosaic virus 35S promoter. In comparison to samples transformed with 35S∷uidA, roots with suppressed MtAOC1 expression exhibited lower JA levels and a remarkable delay in the process of colonization with G. intraradices. Both the mycorrhization rate, quantified by fungal rRNA, and the arbuscule formation, analyzed by the expression level of the AM-specific gene MtPT4, were affected. Staining of fungal material in roots with suppressed MtAOC1 revealed a decreased number of arbuscules, but these did not exhibit an altered structure. Our results indicate a crucial role for JA in the establishment of AM symbiosis.
Publikation

Hüsken, A.; Baumert, A.; Milkowski, C.; Becker, H. C.; Strack, D.; Möllers, C.; Resveratrol glucoside (Piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.) Theor. Appl. Genet. 111, 1553-1562, (2005) DOI: 10.1007/s00122-005-0085-1

Resveratrol is a phytoalexin produced in various plants like wine, peanut or pine in response to fungal infection or UV irradiation, but it is absent in members of the Brassicaceae. Moreover, resveratrol and its glucoside (piceid) are considered to have beneficial effects on human health, known to reduce heart disease, arteriosclerosis and cancer mortality. Therefore, the introduction of the gene encoding stilbene synthase for resveratrol production in rapeseed is a tempting approach to improve the quality of rapeseed products. The stilbene synthase gene isolated from grapevine (Vitis vinifera L.) was cloned under control of the seed-specific napin promotor and introduced into rapeseed (Brassica napus L.) by Agrobacterium-mediated co-transformation together with a ds-RNA-interference construct deduced from the sequence of the key enzyme for sinapate ester biosynthesis, UDP-glucose:sinapate glucosyltransferase (BnSGT1), assuming that the suppression of the sinapate ester biosynthesis may increase the resveratrol production in seeds through the increased availability of the precursor 4-coumarate. Resveratrol glucoside (piceid) was produced at levels up to 361 μg/g in the seeds of the primary transformants. This value exceeded by far piceid amounts reported from B. napus expressing VST1 in the wild type sinapine background. There was no significant difference in other important agronomic traits, like oil, protein, fatty acid and glucosinolate content in comparison to the control plants. In the third seed generation, up to 616 μg/g piceid was found in the seeds of a homozygous T3-plant with a single transgene copy integrated. The sinapate ester content in this homozygous T3-plant was reduced from 7.43 to 2.40 mg/g. These results demonstrate how the creation of a novel metabolic sink could divert the synthesis towards the production of piceid rather than sinapate ester, thereby increasing the value of oilseed products.
Publikation

Hüsken, A.; Baumert, A.; Strack, D.; Becker, H. C.; Möllers, C.; Milkowski, C.; Reduction of Sinapate Ester Content in Transgenic Oilseed Rape (Brassica napus) by dsRNAi-based Suppression of BnSGT1 Gene Expression Mol. Breed. 16, 127-138, (2005) DOI: 10.1007/s11032-005-6825-8

Seeds of oilseed rape (Brassica napus) accumulate high amounts of antinutritive sinapate esters (SE) with sinapoylcholine (sinapine) as major component, accompanied by sinapoylglucose. These phenolic compounds compromise the use of the protein-rich valuable seed meal. Hence, a substantial reduction of the SE content is considered essential for establishing rape as a protein crop. The present work focuses on the suppression of sinapine synthesis in rape. Therefore, rape (spring cultivar Drakkar) was transformed with a dsRNAi construct designed to silence seed-specifically the BnSGT1 gene encoding UDP-glucose:sinapate glucosyltransferase (SGT1). This resulted in a substantial decrease of SE content in T2 seeds with a reduction reaching 61%. In T2 seeds a high and significant correlation between the contents of sinapoylglucose and all other sinapate esters has been observed. Among transgenic plants, no significant difference in other important agronomic traits, such as oil, protein, fatty acid and glucosinolate content in comparison to the control plants was observed. Maximal reduction of total SE content by 76% was observed in seeds of one homozygous T2 plant (T3 seeds) carrying the BnSGT1 suppression cassette as a single copy insert. In conclusion, this study is an initial proof of principle that suppression of sinapoylglucose formation leads to a strong reduction of SE in rape seeds and is thus a promising approach in establishing rape, currently an important oil crop, as a protein crop as well.
Publikation

Hause, B.; Fester, T.; Molecular and cell biology of arbuscular mycorrhizal symbiosis Planta 221, 184-196, (2005) DOI: 10.1007/s00425-004-1436-x

The roots of most extant plants are able to become engaged in an interaction with a small group of fungi of the fungal order Glomales (Glomeromycota). This interaction—arbuscular mycorrhizal (AM) symbiosis—is the evolutionary precursor of most other mutualistic root-microbe associations. The molecular analysis of this interaction can elucidate basic principles regarding such associations. This review summarizes our present knowledge about cellular and molecular aspects of AM. Emphasis is placed on morphological changes in colonized cells, transfer of nutrients between both interacting partners, and plant defence responses. Similarities to and differences from other associations of plant and microorganisms are highlighted regarding defence reactions and signal perception.
Publikation

Hause, G.; Lischewski, S.; Wessjohann, L. A.; Hause, B.; Epothilone D affects cell cycle and microtubular pattern in plant cells J. Exp. Bot. 56, 2131-2137, (2005) DOI: 10.1093/jxb/eri211

Epothilones, macrocyclic lactones from culture filtrates of the myxobacterium Sorangium cellulosum, are known as taxol-like microtubular drugs in human medicine. To date, nothing is known about the effect of epothilones on microtubules (MTs) in plant cells and/or on the plant cell cycle. As shown in this report, the treatment of tomato cell suspension cultures with epothilone D produced a continuous increase in the mitotic index. Dose–response curves revealed that epothilone D alters the mitotic index at concentrations as low as 1.5 μM. Mitotic arrest was already visible after only 2 h of treatment, and 55% of the cells were arrested after 24 h. As shown by immunocytological methods, abnormal spindles are formed during metaphase, which leads to a random distribution of chromosomes in the whole cell and prevents the formation of a metaphase plate. The process of chromosome decondensation does not seem to be affected, because micronuclei form at the same place with the distributed chromosomes. This suggests that epothilone D influences the stability of plant MTs mainly during metaphase of the mitotic cycle. In metaphase, the effects of epothilone D seem to be irreversible, because cells with an abnormal spindle could not be recovered after removal of the drug.
Publikation

Fester, T.; Wray, V.; Nimtz, M.; Strack, D.; Is stimulation of carotenoid biosynthesis in arbuscular mycorrhizal roots a general phenomenon? Phytochemistry 66, 1781-1786, (2005) DOI: 10.1016/j.phytochem.2005.05.009

The identification and quantification of cyclohexenone glycoside derivatives from the model legume Lotus japonicus revealed far higher levels than expected according to the stoichiometric relation to another, already determined carotenoid cleavage product, i.e., mycorradicin. Mycorradicin is responsible for the yellow coloration of many arbuscular mycorrhizal (AM) roots and is usually esterified in a complex way to other compounds. After liberation from such complexes it has been detected in AM roots of many, but not of all plants examined. The non-stoichiometric occurrence of this compound compared with other carotenoid cleavage products suggested that carotenoid biosynthesis might be activated upon mycorrhization even in plant species without detectable levels of mycorradicin. This assumption has been supported by inhibition of a key enzyme of carotenoid biosynthesis (phytoene desaturase) and quantification of the accumulating enzymic substrate (phytoene). Our observations suggest that the activation of carotenoid biosynthesis in AM roots is a general phenomenon and that quantification of mycorradicin is not always a good indicator for this activation.
IPB Mainnav Search