zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Stoffwechsel- und Zellbiologie

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 11.

Publikation

Weier, D.; Thiel, J.; Kohl, S.; Tarkowská, D.; Strnad, M.; Schaarschmidt, S.; Weschke, W.; Weber, H.; Hause, B.; Gibberellin-to-abscisic acid balances govern development and differentiation of the nucellar projection of barley grains J. Exp. Bot. 65, 5291-5304, (2014) DOI: 10.1093/jxb/eru289

In cereal grains, the maternal nucellar projection (NP) constitutes the link to the filial organs, forming a transfer path for assimilates and signals towards the endosperm. At transition to the storage phase, the NP of barley (Hordeum vulgare) undergoes dynamic and regulated differentiation forming a characteristic pattern of proliferating, elongating, and disintegrating cells. Immunolocalization revealed that abscisic acid (ABA) is abundant in early non-elongated but not in differentiated NP cells. In the maternally affected shrunken-endosperm mutant seg8, NP cells did not elongate and ABA remained abundant. The amounts of the bioactive forms of gibberellins (GAs) as well as their biosynthetic precursors were strongly and transiently increased in wild-type caryopses during the transition and early storage phases. In seg8, this increase was delayed and less pronounced together with deregulated gene expression of specific ABA and GA biosynthetic genes. We concluded that differentiation of the barley NP is driven by a distinct and specific shift from lower to higher GA:ABA ratios and that the spatial–temporal change of GA:ABA balances is required to form the differentiation gradient, which is a prerequisite for ordered transfer processes through the NP. Deregulated ABA:GA balances in seg8 impair the differentiation of the NP and potentially compromise transfer of signals and assimilates, resulting in aberrant endosperm growth. These results highlight the impact of hormonal balances on the proper release of assimilates from maternal to filial organs and provide new insights into maternal effects on endosperm differentiation and growth of barley grains.
Publikation

Schaarschmidt, S.; Gresshoff, P. M.; Hause, B.; Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization Genome Biol. 14, R62, (2013) DOI: 10.1186/gb-2013-14-6-r62

BackgroundSimilarly to the legume-rhizobia symbiosis, the arbuscular mycorrhiza interaction is controlled by autoregulation representing a feedback inhibition involving the CLAVATA1-like receptor kinase NARK in shoots. However, little is known about signals and targets down-stream of NARK. To find NARK-related transcriptional changes in mycorrhizal soybean (Glycine max) plants, we analyzed wild-type and two nark mutant lines interacting with the arbuscular mycorrhiza fungus Rhizophagus irregularis.ResultsAffymetrix GeneChip analysis of non-inoculated and partially inoculated plants in a split-root system identified genes with potential regulation by arbuscular mycorrhiza or NARK. Most transcriptional changes occur locally during arbuscular mycorrhiza symbiosis and independently of NARK. RT-qPCR analysis verified nine genes as NARK-dependently regulated. Most of them have lower expression in roots or shoots of wild type compared to nark mutants, including genes encoding the receptor kinase GmSIK1, proteins with putative function as ornithine acetyl transferase, and a DEAD box RNA helicase. A predicted annexin named GmAnnx1a is differentially regulated by NARK and arbuscular mycorrhiza in distinct plant organs. Two putative CCAAT-binding transcription factor genes named GmNF-YA1a and GmNF-YA1b are down-regulated NARK-dependently in non-infected roots of mycorrhizal wild-type plants and functional gene analysis confirmed a positive role for these genes in the development of an arbuscular mycorrhiza symbiosis.ConclusionsOur results indicate GmNF-YA1a/b as positive regulators in arbuscular mycorrhiza establishment, whose expression is down-regulated by NARK in the autoregulated root tissue thereby diminishing subsequent infections. Genes regulated independently of arbuscular mycorrhization by NARK support an additional function of NARK in symbioses-independent mechanisms.
Publikation

Landgraf, R.; Schaarschmidt, S.; Hause, B.; Repeated leaf wounding alters the colonization of Medicago truncatula roots by beneficial and pathogenic microorganisms Plant Cell Environ. 35, 1344-1357, (2012) DOI: 10.1111/j.1365-3040.2012.02495.x

In nature, plants are subject to various stresses that are often accompanied by wounding of the aboveground tissues. As wounding affects plants locally and systemically, we investigated the impact of leaf wounding on interactions of Medicago truncatula with root‐colonizing microorganisms, such as the arbuscular mycorrhizal (AM) fungus Glomus intraradices, the pathogenic oomycete Aphanomyces euteiches and the nitrogen‐fixing bacterium Sinorhizobium meliloti. To obtain a long‐lasting wound response, repeated wounding was performed and resulted in locally and systemically increased jasmonic acid (JA) levels accompanied by the expression of jasmonate‐induced genes, among them the genes encoding allene oxide cyclase 1 (MtAOC1) and a putative cell wall‐bound invertase (cwINV). After repeated wounding, colonization with the AM fungus was increased, suggesting a role of jasmonates as positive regulators of mycorrhization, whereas the interaction with the rhizobacterium was not affected. In contrast, wounded plants appeared to be less susceptible to pathogens which might be caused by JA‐induced defence mechanisms. The effects of wounding on mycorrhization and pathogen infection could be partially mimicked by foliar application of JA. In addition to JA itself, the positive effect on mycorrhization might be mediated by systemically induced cwINV, which was previously shown to exhibit a regulatory function on interaction with AM fungi.
Publikation

Helber, N.; Wippel, K.; Sauer, N.; Schaarschmidt, S.; Hause, B.; Requena, N.; A Versatile Monosaccharide Transporter That Operates in the Arbuscular Mycorrhizal Fungus Glomus sp Is Crucial for the Symbiotic Relationship with Plants Plant Cell 23, 3812-3823, (2011) DOI: 10.1105/tpc.111.089813

For more than 400 million years, plants have maintained a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi. This evolutionary success can be traced to the role of these fungi in providing plants with mineral nutrients, particularly phosphate. In return, photosynthates are given to the fungus, which support its obligate biotrophic lifestyle. Although the mechanisms involved in phosphate transfer have been extensively studied, less is known about the reciprocal transfer of carbon. Here, we present the high-affinity Monosaccharide Transporter2 (MST2) from Glomus sp with a broad substrate spectrum that functions at several symbiotic root locations. Plant cell wall sugars can efficiently outcompete the Glc uptake capacity of MST2, suggesting they can serve as alternative carbon sources. MST2 expression closely correlates with that of the mycorrhiza-specific PhosphateTransporter4 (PT4). Furthermore, reduction of MST2 expression using host-induced gene silencing resulted in impaired mycorrhiza formation, malformed arbuscules, and reduced PT4 expression. These findings highlight the symbiotic role of MST2 and support the hypothesis that the exchange of carbon for phosphate is tightly linked. Unexpectedly, we found that the external mycelium of AM fungi is able to take up sugars in a proton-dependent manner. These results imply that the sugar uptake system operating in this symbiosis is more complex than previously anticipated.
Publikation

Schaarschmidt, S.; Hause, B.; Strack, D.; Wege zur Endomykorrhiza. Einladung ans Buffet Biologie in unserer Zeit 39, 102-113, (2009) DOI: 10.1002/biuz.200610385

Die Lebensgemeinschaft mit Mykorrhizapilzen stellt Pflanzen mineralische Nährstoffe und Wasser zur Verfügung und gilt daher als evolutionäre Grundlage für die Entwicklung der Landpflanzen. Die heute weit verbreitete arbuskuläre Mykorrhiza (AM) ist insbesondere unter widrigen Bedingungen (Nährstoffmangel, Trocken‐, Salz‐ oder Schwermetallstress sowie Pathogenbefall) für die Pflanze von Nutzen. Der pilzliche AM‐Partner, der obligat auf die Interaktion angewiesen ist, wird im Gegenzug mit Kohlenhydraten versorgt. Der Artikel beschreibt den aktuellen Stand der Forschung bezüglich der Etablierung und Regulation der AM durch die Pflanze. Es werden die frühen Erkennungssignale und die nachfolgende Wegbereitung der Pflanze für den eindringenden Pilz, die Kohlenhydratversorgung des AM‐Pilzes, wie auch die Limitierung der pilzlichen Infektionen mittels Autoregulation und die Rolle der Phytohormone für eine funktionelle und ausgeglichene Symbiose behandelt.
Publikation

Hause, B.; Schaarschmidt, S.; The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms Phytochemistry 70, 1589-1599, (2009) DOI: 10.1016/j.phytochem.2009.07.003

Many plants are able to develop mutualistic interactions with arbuscular mycorrhizal fungi and/or nitrogen-fixing bacteria. Whereas the former is widely distributed among most of the land plants, the latter is restricted to species of ten plant families, including the legumes. The establishment of both associations is based on mutual recognition and a high degree of coordination at the morphological and physiological level. This requires the activity of a number of signals, including jasmonates. Here, recent knowledge on the putative roles of jasmonates in both mutualistic symbioses will be reviewed. Firstly, the action of jasmonates will be discussed in terms of the initial signal exchange between symbionts and in the resulting plant signaling cascade common for nodulation and mycorrhization. Secondly, the putative role of jasmonates in the autoregulation of the endosymbioses will be outlined. Finally, aspects of function of jasmonates in the fully established symbioses will be presented. Various processes will be discussed that are possibly mediated by jasmonates, including the redox status of nodules and the carbohydrate partitioning of mycorrhizal roots.
Publikation

Schaarschmidt, S.; Hause, B.; Apoplastic invertases: Multi-faced players in the arbuscular mycorrhization Plant Signal Behav. 3, 317-319, (2008) DOI: 10.4161/psb.3.5.5307

The mutualistic interaction of plants with arbuscular mycorrhizal (AM) fungi is characterized by an exchange of nutrients. The plant provides sugars in the form of hexoses to the heterotrophic fungus in return for phosphate as well as nitrogen, water, and micronutrients. Plant sucrose-cleaving enzymes are predicted to play a crucial role in hexose mobilization as these enzymes appear to be absent in the fungal partner. Here, recent findings concerning the function of plant apoplastic invertases in the AM symbiosis are discussed. Plants with modulated enzyme activity in roots and leaves provide additional insight on the complexity of the regulation of the AM interaction by apoplastic invertases as mycorrhization could be reduced or stimulated depending on the level of invertase activity and its tissue-specific expression.
Publikation

Schaarschmidt, S.; González, M.-C.; Roitsch, T.; Strack, D.; Sonnewald, U.; Hause, B.; Regulation of Arbuscular Mycorrhization by Carbon. The Symbiotic Interaction Cannot Be Improved by Increased Carbon Availability Accomplished by Root-Specifically Enhanced Invertase Activity Plant Physiol. 143, 1827-1840, (2007) DOI: 10.1104/pp.107.096446

The mutualistic interaction in arbuscular mycorrhiza (AM) is characterized by an exchange of mineral nutrients and carbon. The major benefit of AM, which is the supply of phosphate to the plant, and the stimulation of mycorrhization by low phosphate fertilization has been well studied. However, less is known about the regulatory function of carbon availability on AM formation. Here the effect of enhanced levels of hexoses in the root, the main form of carbohydrate used by the fungus, on AM formation was analyzed. Modulation of the root carbohydrate status was performed by expressing genes encoding a yeast (Saccharomyces cerevisiae)-derived invertase, which was directed to different subcellular locations. Using tobacco (Nicotiana tabacum) alc∷cwINV plants, the yeast invertase was induced in the whole root system or in root parts. Despite increased hexose levels in these roots, we did not detect any effect on the colonization with Glomus intraradices analyzed by assessment of fungal structures and the level of fungus-specific palmitvaccenic acid, indicative for the fungal carbon supply, or the plant phosphate content. Roots of Medicago truncatula, transformed to express genes encoding an apoplast-, cytosol-, or vacuolar-located yeast-derived invertase, had increased hexose-to-sucrose ratios compared to β-glucuronidase-transformed roots. However, transformations with the invertase genes did not affect mycorrhization. These data suggest the carbohydrate supply in AM cannot be improved by root-specifically increased hexose levels, implying that under normal conditions sufficient carbon is available in mycorrhizal roots. In contrast, tobacco rolC∷ppa plants with defective phloem loading and tobacco pyk10∷InvInh plants with decreased acid invertase activity in roots exhibited a diminished mycorrhization.
Publikation

Schaarschmidt, S.; Kopka, J.; Ludwig-Müller, J.; Hause, B.; Regulation of arbuscular mycorrhization by apoplastic invertases: enhanced invertase activity in the leaf apoplast affects the symbiotic interaction Plant J. 51, 390-405, (2007) DOI: 10.1111/j.1365-313X.2007.03150.x

The effect of constitutive invertase overexpression on the arbuscular mycorrhiza (AM) is shown. The analysis of the enhanced potential for sucrose cleavage was performed with a heterozygous line of Nicotiana tabacum 35S::cwINV expressing a chimeric gene encoding apoplast‐located yeast‐derived invertase with the CaMV35S promoter. Despite the 35S promoter, roots of the transgenic plants showed no or only minor effects on invertase activity whereas the activity in leaves was increased at different levels. Plants with strongly elevated leaf invertase activity, which exhibited a strong accumulation of hexoses in source leaves, showed pronounced phenotypical effects like stunted growth and chlorosis, and an undersupply of the root with carbon. Moreover, transcripts of PR (pathogenesis related) genes accumulated in the leaves. In these plants, mycorrhization was reduced. Surprisingly, plants with slightly increased leaf invertase activity showed a stimulation of mycorrhization, particularly 3 weeks after inoculation. Compared with wild‐type, a higher degree of mycorrhization accompanied by a higher density of all fungal structures and a higher level of Glomus intraradices ‐specific rRNA was detected. Those transgenic plants showed no accumulation of hexoses in the source leaves, minor phenotypical effects and no increased PR gene transcript accumulation. The roots had even lower levels of phenolic compounds (chlorogenic acid and scopolin), amines (such as tyramine, dopamine, octopamine and nicotine) and some amino acids (including 5‐amino‐valeric acid and 4‐amino‐butyric acid), as well as an increased abscisic acid content compared with wild‐type. Minor metabolic changes were found in the leaves of these plants. The changes in metabolism and defense status of the plant and their putative role in the formation of an AM symbiosis are discussed.
Publikation

Schaarschmidt, S.; Roitsch, T.; Hause, B.; Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots J. Exp. Bot. 57, 4015-4023, (2006) DOI: 10.1093/jxb/erl172

Extracellular invertases are suggested to play a crucial role in the arbuscular mycorrhiza (AM) symbiosis to fulfil the increased sink function of the mycorrhizal root and the supply of the obligate biotrophic AM fungus with hexoses. In tomato (Lycopersicon esculentum), LIN6 represents an apoplastic invertase which is described as a key enzyme in establishing and maintaining sink metabolism. In this study, transcript levels of LIN6 were analysed in tomato roots colonized with the AM fungus Glomus intraradices. Using real-time RT–PCR, a nearly 3-fold increase in LIN6 mRNA levels was detected at late stages of mycorrhization (11 weeks after inoculation). A 1.8-fold induction could already be achieved at earlier stages (5 weeks after inoculation) using higher inoculum concentrations, whereas wounding of non-mycorrhizal roots resulted in up to 12-fold enhanced LIN6 transcripts. As revealed by in situ hybridization, the expression of LIN6 upon mycorrhization was specifically restricted to colonized cells and to the central cylinder. Such a strongly localized pattern due to mycorrhizal cells and to the central core could also be shown for promoter activity using transgenic Nicotiana tabacum plants expressing the gene coding for β-glucuronidase under the control of the LIN6 promoter. The moderate induction of LIN6 expression in mycorrhizal tomato roots compared with stress-stimulated induction suggested a fine-tuning in the activation of sink metabolism in the mutualistic interaction, avoiding stress-induced defence reactions.
IPB Mainnav Search