zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 21 bis 30 von 49.

Publikation

Püllmann, P.; Ulpinnis, C.; Marillonnet, S.; Gruetzner, R.; Neumann, S.; Weissenborn, M. J.; Golden Mutagenesis: An efficient multi-site-saturation mutagenesis approach by Golden Gate cloning with automated primer design Sci. Rep. 9, 10932, (2019) DOI: 10.1038/s41598-019-47376-1

Site-directed methods for the generation of genetic diversity are essential tools in the field of directed enzyme evolution. The Golden Gate cloning technique has been proven to be an efficient tool for a variety of cloning setups. The utilization of restriction enzymes which cut outside of their recognition domain allows the assembly of multiple gene fragments obtained by PCR amplification without altering the open reading frame of the reconstituted gene. We have developed a protocol, termed Golden Mutagenesis that allows the rapid, straightforward, reliable and inexpensive construction of mutagenesis libraries. One to five amino acid positions within a coding sequence could be altered simultaneously using a protocol which can be performed within one day. To facilitate the implementation of this technique, a software library and web application for automated primer design and for the graphical evaluation of the randomization success based on the sequencing results was developed. This allows facile primer design and application of Golden Mutagenesis also for laboratories, which are not specialized in molecular biology.
Bücher und Buchkapitel

Marillonnet, S.; Werner, S.; Assembly of Complex Pathways Using Type IIs Restriction Enzymes (Santos, C. N. S. & Ajikumar, P. K., eds.). Methods Mol. Biol. 1927, 93-109, (2019) ISBN: 978-1-4939-9142-6 DOI: 10.1007/978-1-4939-9142-6_7

Efficient DNA assembly methods are essential tools for synthetic biology and metabolic engineering. Among several recently developed methods that allow assembly of multiple DNA fragments in a single step, DNA assembly using type IIS enzymes provides many advantages for complex pathway engineering. In particular, it provides the ability for the user to quickly assemble multigene constructs using a series of simple one-pot assembly steps starting from libraries of cloned and sequenced parts. We describe here a protocol for assembly of multigene constructs using the modular cloning system (MoClo). Making constructs using the MoClo system requires to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. Basic parts that are not yet available need to be made. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.
Preprints

Püllmann, P.; Ulpinnis, C.; Marillonnet, S.; Gruetzner, R.; Neumann, S.; Weissenborn, M. J.; Golden Mutagenesis: An efficient multi-site-saturation mutagenesis approach by Golden Gate cloning with automated primer design bioRxiv (2018) DOI: 10.1101/453621

Site-directed methods for the generation of genetic diversity are essential tools in the field of directed enzyme evolution. The Golden Gate cloning technique has been proven to be an efficient tool for a variety of cloning setups. The utilization of restriction enzymes which cut outside of their recognition domain allows the assembly of multiple gene fragments obtained by PCR amplification without altering the open reading frame of the reconstituted gene. We have developed a protocol, termed Golden Muta-genesis that allows the rapid, straightforward, reliable and inexpensive construction of mutagenesis libraries. One to five amino acid positions within a coding sequence could be altered simultaneously using a protocol which can be performed within one day. To facilitate the implementation of this technique, a software library and web application for automated primer design and for the graphical evaluation of the randomization success based on the sequencing results was developed. This allows facile primer design and application of Golden Mutagenesis also for laboratories, which are not specialized in molecular biology.
Preprints

Ordon, J.; Bressan, M.; Kretschmer, C.; Dall'Osto, L.; Marillonnet, S.; Bassi, R.; Stuttmann, J.; Optimized Cas9 expression systems for highly efficient Arabidopsis genome editing facilitate isolation of complex alleles in a single generation bioRxiv (2018) DOI: 10.1101/393439

Genetic resources for the model plant Arabidopsis comprise mutant lines defective in almost any single gene in reference accession Columbia. However, gene redundancy and/or close linkage often render it extremely laborious or even impossible to isolate a desired line lacking a specific function or set of genes from segregating populations. Therefore, we here evaluated strategies and efficiencies for the inactivation of multiple genes by Cas9-based nucleases and multiplexing. In first attempts, we succeeded in isolating a mutant line carrying a 70 kb deletion, which occurred at a frequency of ~1.6% in the T2 generation, through PCR-based screening of numerous individuals. However, we failed to isolate a line lacking Lhcb1 genes, which are present in five copies organized at two loci in the Arabidopsis genome. To improve efficiency of our Cas9-based nuclease system, regulatory sequences controlling Cas9 expression levels and timing were systematically compared. Indeed, use of DD45 and RPS5a promoters improved efficiency of our genome editing system by approximately 25-30-fold in comparison to the previous ubiquitin promoter. Using an optimized genome editing system with RPS5a promoter-driven Cas9, putatively quintuple mutant lines lacking detectable amounts of Lhcb1 protein represented approximately 30% of T1 transformants. These results show how improved genome editing systems facilitate the isolation of complex mutant alleles, previously considered impossible to generate, at high frequency even in a single (T1) generation.
Publikation

Stauder, R.; Welsch, R.; Camagna, M.; Kohlen, W.; Balcke, G. U.; Tissier, A.; Walter, M. H.; Strigolactone Levels in Dicot Roots Are Determined by an Ancestral Symbiosis-Regulated Clade of the PHYTOENE SYNTHASE Gene Family Front. Plant Sci. 9, 255, (2018) DOI: 10.3389/fpls.2018.00255

Strigolactones (SLs) are apocarotenoid phytohormones synthesized from carotenoid precursors. They are produced most abundantly in roots for exudation into the rhizosphere to cope with mineral nutrient starvation through support of root symbionts. Abscisic acid (ABA) is another apocarotenoid phytohormone synthesized in roots, which is involved in responses to abiotic stress. Typically low carotenoid levels in roots raise the issue of precursor supply for the biosynthesis of these two apocarotenoids in this organ. Increased ABA levels upon abiotic stress in Poaceae roots are known to be supported by a particular isoform of phytoene synthase (PSY), catalyzing the rate-limiting step in carotenogenesis. Here we report on novel PSY3 isogenes from Medicago truncatula (MtPSY3) and Solanum lycopersicum (SlPSY3) strongly expressed exclusively upon root interaction with symbiotic arbuscular mycorrhizal (AM) fungi and moderately in response to phosphate starvation. They belong to a widespread clade of conserved PSYs restricted to dicots (dPSY3) distinct from the Poaceae-PSY3s involved in ABA formation. An ancient origin of dPSY3s and a potential co-evolution with the AM symbiosis is discussed in the context of PSY evolution. Knockdown of MtPSY3 in hairy roots of M. truncatula strongly reduced SL and AM-induced C13 α-ionol/C14 mycorradicin apocarotenoids. Inhibition of the reaction subsequent to phytoene synthesis revealed strongly elevated levels of phytoene indicating induced flux through the carotenoid pathway in roots upon mycorrhization. dPSY3 isogenes are coregulated with upstream isogenes and downstream carotenoid cleavage steps toward SLs (D27, CCD7, CCD8) suggesting a combined carotenoid/apocarotenoid pathway, which provides “just in time”-delivery of precursors for apocarotenoid formation.
Publikation

Kowarschik, K.; Hoehenwarter, W.; Marillonnet, S.; Trujillo, M.; UbiGate: a synthetic biology toolbox to analyse ubiquitination New Phytol. 217, 1749-1763, (2018) DOI: 10.1111/nph.14900

Ubiquitination is mediated by an enzymatic cascade that results in the modification of substrate proteins, redefining their fate. This post‐translational modification is involved in most cellular processes, yet its analysis faces manifold obstacles due to its complex and ubiquitous nature. Reconstitution of the ubiquitination cascade in bacterial systems circumvents several of these problems and was shown to faithfully recapitulate the process.Here, we present UbiGate − a synthetic biology toolbox, together with an inducible bacterial expression system – to enable the straightforward reconstitution of the ubiquitination cascades of different organisms in Escherichia coli by ‘Golden Gate’ cloning.This inclusive toolbox uses a hierarchical modular cloning system to assemble complex DNA molecules encoding the multiple genetic elements of the ubiquitination cascade in a predefined order, to generate polycistronic operons for expression.We demonstrate the efficiency of UbiGate in generating a variety of expression elements to reconstitute autoubiquitination by different E3 ligases and the modification of their substrates, as well as its usefulness for dissecting the process in a time‐ and cost‐effective manner.
Publikation

Gantner, J.; Ordon, J.; Ilse, T.; Kretschmer, C.; Gruetzner, R.; Löfke, C.; Dagdas, Y.; Bürstenbinder, K.; Marillonnet, S.; Stuttmann, J.; Peripheral infrastructure vectors and an extended set of plant parts for the Modular Cloning system PLOS ONE 13, e0197185, (2018) DOI: 10.1371/journal.pone.0197185

Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. Here, a toolkit containing further modules for the novel DNA assembly standards was developed. Intended for use with Modular Cloning, most modules are also compatible with GoldenBraid. Firstly, a collection of approximately 80 additional phytobricks is provided, comprising e.g. modules for inducible expression systems, promoters or epitope tags. Furthermore, DNA modules were developed for connecting Modular Cloning and Gateway cloning, either for toggling between systems or for standardized Gateway destination vector assembly. Finally, first instances of a “peripheral infrastructure” around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. The presented material will further enhance versatility of hierarchical DNA assembly strategies.
Preprints

Gantner, J.; Ilse, T.; Ordon, J.; Kretschmer, C.; Gruetzner, R.; Löfke, C.; Dagdas, Y.; Bürstenbinder, K.; Marillonnet, S.; Stuttmann, J.; Peripheral infrastructure vectors and an extended set of plant parts for the modular cloning system bioRxiv (2017) DOI: 10.1101/237768

Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. This combinatorial assembly strategy meets the increasingly complex demands in biotechnology and bioengineering, and also represents a cost-efficient and versatile alternative to previous molecular cloning techniques. For Modular Cloning, a collection of commonly used Plant Parts was previously released together with the Modular Cloning toolkit itself, which largely facilitated the adoption of this cloning system in the research community. Here, a collection of approximately 80 additional phytobricks is provided. These phytobricks comprise e.g. modules for inducible expression systems, different promoters or epitope tags, which will increase the versatility of Modular Cloning-based DNA assemblies. Furthermore, first instances of a “peripheral infrastructure” around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. Additionally, DNA modules and assembly strategies for connecting Modular Cloning with Gateway Cloning are presented, which may serve as an interface between available resources and newly adopted hierarchical assembly strategies. The presented material will be provided as a toolkit to the plant research community and will further enhance the usefulness and versatility of Modular Cloning.
Publikation

Scheibner, F.; Marillonnet, S.; Büttner, D.; The TAL Effector AvrBs3 from Xanthomonas campestris pv. vesicatoria Contains Multiple Export Signals and Can Enter Plant Cells in the Absence of the Type III Secretion Translocon Front. Microbiol. 8, 2180, (2017) DOI: 10.3389/fmicb.2017.02180

Pathogenicity of the Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into plant cells. Effector protein delivery is controlled by the T3S chaperone HpaB, which presumably escorts effector proteins to the secretion apparatus. One intensively studied effector is the transcription activator-like (TAL) effector AvrBs3, which binds to promoter sequences of plant target genes and activates plant gene expression. It was previously reported that type III-dependent delivery of AvrBs3 depends on the N-terminal protein region. The signals that control T3S and translocation of AvrBs3, however, have not yet been characterized. In the present study, we show that T3S and translocation of AvrBs3 depend on the N-terminal 10 and 50 amino acids, respectively. Furthermore, we provide experimental evidence that additional signals in the N-terminal 30 amino acids and the region between amino acids 64 and 152 promote translocation of AvrBs3 in the absence of HpaB. Unexpectedly, in vivo translocation assays revealed that AvrBs3 is delivered into plant cells even in the absence of HrpF, which is the predicted channel-forming component of the T3S translocon in the plant plasma membrane. The presence of HpaB- and HrpF-independent transport routes suggests that the delivery of AvrBs3 is initiated during early stages of the infection process, presumably before the activation of HpaB or the insertion of the translocon into the plant plasma membrane.
Publikation

Scheler, U.; Brandt, W.; Porzel, A.; Rothe, K.; Manzano, D.; Božić, D.; Papaefthimiou, D.; Balcke, G. U.; Henning, A.; Lohse, S.; Marillonnet, S.; Kanellis, A. K.; Ferrer, A.; Tissier, A.; Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast Nat. Commun. 7, 12942, (2016) DOI: 10.1038/ncomms12942

Rosemary extracts containing the phenolic diterpenes carnosic acid and its derivative carnosol are approved food additives used in an increasingly wide range of products to enhance shelf-life, thanks to their high anti-oxidant activity. We describe here the elucidation of the complete biosynthetic pathway of carnosic acid and its reconstitution in yeast cells. Cytochrome P450 oxygenases (CYP76AH22-24) from Rosmarinus officinalis and Salvia fruticosa already characterized as ferruginol synthases are also able to produce 11-hydroxyferruginol. Modelling-based mutagenesis of three amino acids in the related ferruginol synthase (CYP76AH1) from S. miltiorrhiza is sufficient to convert it to a 11-hydroxyferruginol synthase (HFS). The three sequential C20 oxidations for the conversion of 11-hydroxyferruginol to carnosic acid are catalysed by the related CYP76AK6-8. The availability of the genes for the biosynthesis of carnosic acid opens opportunities for the metabolic engineering of phenolic diterpenes, a class of compounds with potent anti-oxidant, anti-inflammatory and anti-tumour activities.
IPB Mainnav Search