zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Natur- und Wirkstoffchemie

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 13.

Publikation

Ali, N. A. A.; Chhetri, B. K.; Dosoky, N. S.; Shari, K.; Al-Fahad, A. J. A.; Wessjohann, L.; Setzer, W. N.; Antimicrobial, Antioxidant, and Cytotoxic Activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) Essential Oils Medicines 4, 17, (2017) DOI: 10.3390/medicines4020017

Background:Ocimum forskolei and Teucrium yemense (Lamiaceae) are used in traditional medicine in Yemen. Methods: The chemical composition, antimicrobial, antioxidant and cytotoxic activities of the essential oils isolated from the leaves of Ocimum forskolei Benth. (EOOF) and two different populations of Teucrium yemense Deflers., one collected from Dhamar province (EOTY-d), and another collected from Taiz (EOTY-t) were investigated. The antimicrobial activities of the oils were evaluated against several microorganisms with the disc diffusion test or the broth microdilution test. The essential oils were screened for in-vitro cytotoxic activity against human tumor cells. EOOF and EOTY-d were screened for free-radical-inhibitory activity using the DPPH radical scavenging assay. Results: Sixty-four compounds were identified in (EOOF) representing 100% of the oil content with endo-fenchol (31.1%), fenchone (12.2%), τ-cadinol (12.2%), and methyl (E)-cinnamate (5.1%) as the major compounds. In EOTY-d, 67 compounds were identified, which made up 91% of the total oil. The most abundant constituents were (E)-caryophyllene (11.2%), α-humulene (4.0.%), γ-selinene (5.5%), 7-epi-α-selinene (20.1%), and caryophyllene oxide (20.1%), while the major compounds in EOTY-t were α-pinene (6.6%), (E)-caryophyllene (19.1%) α-humulene (6.4%), δ-cadinene (6.5%), caryophyllene oxide (4.3%), α-cadinol (9.5%), and shyobunol (4.6%). The most sensitive microorganisms for EOOF were B. subtilis, S. aureus, and C. albicans with inhibition zones of 34, 16, and 24 mm and MIC values of, 4.3 mg/mL, 4.3 mg/mL, and 8.6 mg/mL, respectively. EOTY-t showed antimicrobial activity against S. aureus, B. cereus, A. niger, and B. cinerea with MIC values of 0.156, 0.156, 0.313 and 0.313 mg/mL, respectively. Neither essential oil showed remarkable radical inhibition (IC50 = 31.55 and 31.41 μL/mL). EOTY-d was active against HT-29 human colorectal adenocarcinoma cell lines with IC50 = 43.7 μg/mL. Consistent with this, EOTY-t was active against both MCF-7 and MDA-MB-231 human breast adenocarcinoma cells. Conclusions: The antimicrobial activity of Ocimum forskolei essential oil against B. subtilis and C. albicans is consistent with its traditional use in Yemeni traditional medicine to treat skin infections. Both O. forskolei and T. yemense show wide variations in their respective essential oil compositions; there remains a need to investigate both species botanically, genetically, and phytochemically more comprehensively.
Publikation

Al-kaf, A. G.; Crouch, R. A.; Denkert, A.; Porzel, A.; Al-Hawshabi, O. S. S.; Ali, N. A. A.; Setzer, W. N.; Wessjohann, L.; Chemical composition and biological activity of essential oil of Chenopodium ambrosioides from Yemen Am. J. Essent. Oils Nat. Prod. 4, 20-22, (2016)

The chemical composition of the hydrodistilled leaf essential oil from Chenopodium ambrosioides L. growing wild in Yemen was determined by GC-MS analysis, and its cytotoxic, and general antioxidant potential were evaluated. Major compounds of C. ambrosioides oil were ascaridole (54.2%), isoascaridole (27.7%) and p-cymene (8.1%). At concentrations of 50 and 25 μg/mL, the essential oil showed cytotoxic activity against HT29 (human colon adenocarcinoma cells), with growth inhibition of 100 and 56% (± 3). The free radical scavenging ability of the oil was assessed by the DPPH assay to show antiradical activity with IC50 of 10.4 μg/mL. TLC-bioautographic assay was used to identify the acetylcholinesterase inhibitory effect, and ascaridole was isolated and characterized (ESIMS, 1H NMR, 13C NMR and HMBC) as the responsible constituent for anticholinesterase activity.
Publikation

Al-Fatimi, M.; Ali, N. A. A.; Kilian, N.; Franke, K.; Arnold, N.; Kuhnt, C.; Schmidt, J.; Lindequist, U.; Ethnobotany, chemical constituents and biological activities of the flowers of Hydnora abyssinica A.Br. (Hydnoraceae) Pharmazie 71, 222-226, (2016) DOI: 10.1691/ph.2016.5808

Hydnora abyssinica A.Br. (Hydnoraceae), a holoparasitic herb, is for the first time recorded for Abyan governorate of South Yemen. Flowers of this species were studied for their ethnobotanical, biological and chemical properties for the first time. In South Yemen, they are traditionally used as wild food and to cure stomach diseases, gastric ulcer and cancer. Phytochemical analysis of the extracts showed the presence of terpenes, tannins, phenols, and flavonoids. The volatile components of the air-dried powdered flowers were identified using a static headspace GC/MS analysis as acetic acid, ethyl acetate, sabinene, α-terpinene, (+)-D-limonene and γ-terpinene. These volatile compounds that characterize the odor and taste of the flowers were detected for the first time in a species of the family Hydnoraceae. The flowers were extracted by n-hexane, dichlormethane, ethyl acetate, ethanol, methanol and water. With exception of the water extract all extracts demonstrated activities against Gram-positive bacteria as well as remarkable radical scavenging activities in DPPH assay. Ethyl acetate, methanol and water extracts exhibited good antifungal activities. The cytotoxic activity of the extracts against FL cells, measured in neutral red assay, was only weak (IC50 > 500 μg /mL). The results justify the traditional use of the flowers of Hydnora abyssinica in South Yemen.
Publikation

Ali, N. A. A.; Sharopov, F. S.; Al-kaf, A. G.; Hill, G. M.; Arnold, N.; Al-Sokari, S. S.; Setzer, W. N.; Wessjohann, L.; Composition of Essential Oil from Tagetes minuta and its Cytotoxic, Antioxidant and Antimicrobial Activities Nat. Prod. Commun. 9, 265-268, (2014) DOI: 10.1177/1934578X1400900233

The essential oil from the leaves of Tagetes minuta L., growing wild in Yemen, was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry. A total of 28 compounds were identified representing 74.2% of total oil composition. Major components of the essential oil were (Z)-ocimenone (15.9%), (E)-ocimenone (34.8%), (Z)-β-ocimene (8.3%), limonene (2.3%), (Z)-tagetone (1.8%), dihydrotagetone (1.4%) and an unidentified dimethylvinylketone derivative (20.6%). The oil showed moderate cytotoxic activity against MCF-7 breast tumor cells, with an IC50 of 54.7 ± 6.2 μg/mL. In the DPPH radical scavenging assay, T. minuta oil showed potent antiradical activity with an IC50 value of 36 μg/mL. Antimicrobial activity was also investigated on several microorganisms, and the essential oil exhibited high activity against methicillin-resistant Staphylococcus aureus (MRSA) with an inhibition zone of 23 mm. It also exhibited remarkable antifungal activity against Candida albicans with an inhibition zone of 26 mm.
Publikation

Ali, N. A. A.; Wurster, M.; Denkert, A.; Al-Sokari, S. S.; Lindequist, U.; Wessjohann, L.; Cytotoxic and antiphytofungal activity of the essential oils from two artemisia species World J. Pharm. Res. 3, 1350-1354, (2014)

Hydrodistilled essential oils from aerial parts of Artemisia abyssinica Sch.Bip. ex A. Rich, and Artemisia arborescens L. growing in Yemen were screened for their cytotoxic and antiphytofungal properties as well as their chemical compositions. Twenty-seven components were identified in the essential oils and the main components of these species were found to be davanone (42.34%), camphor (22.88%), nerolidol (8.96%), and chamazulene (4.46%), from A. abyssinica oil and artemisia ketone (51.05%), camphor (14.09%), α-bisabolol (12.56%) and α-phellandrene (8.69%) from A. arborescens. At concentration of 50 and 25 μg/mL, A. arborescens oil showed a strong cytotoxic activity with growth inhibition of 95%(±1.6) and 74%(±3.8) (IC50 of 16.91 μg/mL) against HT29 tumor cells (Human colonic adenocarcinoma cells), while A. abyssinica oil exhibited at concentration of 100 and 50 μg/mL growth inhibition of 71.0% (±12.5) and 27.3%(±14.4) (IC50 of 75.42 μg/mL) respectively. Bioautographic assay was used to evaluate the antiphytofungal activity of the oils against Cladosporium cucumerinum.
Publikation

Ali, N. A. A.; Al-Fatimi, M. A.; Crouch, R. A.; Denkert, A.; Setzer, W. N.; Wessjohann, L.; Antimicrobial, Antioxidant, and Cytotoxic Activities of the Essential Oil of Tarchonanthus camphoratus Nat. Prod. Commun. 8, 683-686, (2013) DOI: 10.1177/1934578X1300800534

The leaf essential oil of Tarchonanthuscamphoratus(Asteraceae) was obtained by hydrodistillation and analyzed by GC-MS. Fifty-six components were characterized, representing 94.2% of the total oil with oxygenated monoterpenes (48.3%) and oxygenated sesquiterpenes (32.7%) as the major groups. The principal constituents were identified as endo-fenchol (21.2%), trans-pinene hydrate (8.8%), caryophyllene oxide (7.5%), α-terpineol (6.4%), τ-cadinol (6.4%), and α-cadinol (5.2%). The essential oil was evaluated for its antimicrobial activity using a disc diffusion assay resulting in the moderate inhibition of a number of common human pathogenic bacteria, including methicillin-resistant Staphylococcus aureus(MRSA) and the yeast Candida albicans. The inhibition zones varied from 10 to 14mm/disc. Furthermore, the antioxidant capacity of the essential oil was examined using an in vitroradical scavenging activity test. The T. camphoratus essential oil scavenged 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), resulting in an IC50value of 5.6 mg/mL. At concentrations of 100 and 50μg/mL, the oil showed cytotoxic activity, with growth inhibition of 59.1% (±4.2), and 16.2% (±8.7) against HT29 tumor cells (human colonic adenocarcinoma cells), respectively(IC50 = 84.7 ± 7.5 μg/mL).
Publikation

Heinke, R.; Franke, K.; Michels, K.; Wessjohann, L.; Ali, N. A. A.; Schmidt, J.; Analysis of furanocoumarins from Yemenite Dorstenia species by liquid chromatography/electrospray tandem mass spectrometry J. Mass Spectrom. 47, 7-22, (2012) DOI: 10.1002/jms.2017

A series of prevailing prenylated furanocoumarins from leaves of Dorstenia gigas and Dorstenia foetida (Moraceae) were investigated by liquid chromatography/electrospray tandem mass spectrometry. The mass spectral behavior of the furanocoumarins under positive ion electrospray conditions is discussed using both an ion trap and a triple quadrupole system. It is demonstrated that both methods represent valuable tools not only for the rapid classification of this type of compounds, but also with respect to their substitution pattern.
Publikation

Ali, N. A. A.; Crouch, R. A.; Al-Fatimi, M. A.; Arnold, N.; Teichert, A.; Setzer, W. N.; Wessjohann, L.; Chemical Composition, Antimicrobial, Antiradical and Anticholinesterase activity of the Essential Oil of Pulicaria stephanocarpa from Soqotra Nat. Prod. Commun. 7, 113-116, (2012) DOI: 10.1177/1934578X1200700137

The chemical composition of the hydrodistilled leaf essential oil from Pulicaria stephanocarpa Balf Fil was determined by GC-MS analysis, and its antimicrobial, antioxidant and anticholinesterase (AChE) activities were evaluated. Eighty-three compounds were identified representing 97.2% of the total oil. (E)-Caryophyllene 13.4%, (E)-nerolidol 8.5%, caryophyllene oxide 8.5%, α-cadinol 8.2% spathulenol 6.8% and τ-cadinol 4.7%, were the main components. Antimicrobial activity of the oil, evaluated using the disc diffusion and broth dilution methods, demonstrated the highest susceptibility on Gram-positive bacteria and Candida albicans. The free radical scavenging ability of the oil was assessed by the DPPH assay to show antiradical activity with IC50 of 330 μg/mL. Moreover, the oil revealed an AChE inhibitory activity of 47% at a concentration of 200 μg/mL using Ellman's method.
Publikation

Ali, N. A. A.; Wurster, M.; Denkert, A.; Arnold, N.; Fadail, I.; Al-Didamony, G.; Lindequist, U.; Wessjohann, L.; Setzer, W. N.; Chemical Composition, Antimicrobial, Antioxidant and Cytotoxic Activity of Essential Oils of Plectranthus cylindraceus and Meriandra benghalensis from Yemen Nat. Prod. Commun. 7, 1099-1102, (2012) DOI: 10.1177/1934578X1200700834

The chemical composition, antimicrobial, antioxidant and cytotoxic activities of the essential oils isolated from the leaves of Plectranthus cylindraceus Hoechst. ex. Benth. (EOPC) and Meriandra benghalensis (Roxb.) Benth. (EOMB) were investigated. Sixteen compounds were identified in P. cylindraceus oil representing 94.5% of the oil content with thymol (68.5%), terpinolene (5.3%), β-selinene (4.7%), β-caryophyllene (4.0%), δ-cadinol (2.1%), and ar-curcumene (1.7%) as the major compounds. In M. benghalensis oil, 12 compounds were identified, which made up 82.0% of the total oil. The most abundant constituents were camphor (43.6%), 1,8-cineole (10.7%), α-eudesmol (5.8%), caryophyllene oxide (5.8%), camphene (5.3%) and borneol (3.4%). The antimicrobial activities of both oils were evaluated against five microorganisms with the disc diffusion test, the broth micro-dilution method and a semiquantitative bioautographic test. The most sensitive microorganisms for P. cylindraceus oil were S. aureus, B. subtilis, and C. albicans with inhibition zones of 38, 42, and 43 mm and MIC values of 0.39, 0.18, and, 0.18 μL/mL, respectively. M. benghalensis oil showed weak to moderate activity against the tested microorganisms. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay was employed to study the potential antioxidant activities of both oils. The antioxidant activity of P. cylindraceus oil (IC50 34.5 μg/mL) appeared to be higher than that of M. benghalensis oil (IC50 935 μg/mL). At a concentration of 100 μg/mL, EOMB showed a stronger cytotoxic activity, with growth inhibition of 71% against HT29 tumor cells, than EOPC (18%).
Publikation

Ali, N. A. A.; Sharopov, F. S.; Alhaj, M.; Hill, G. M.; Porzel, A.; Arnold, N.; Setzer, W. N.; Schmidt, J.; Wessjohann, L.; Chemical Composition and Biological Activity of Essential Oil from Pulicaria undulata from Yemen Nat. Prod. Commun. 7, 257-260, (2012) DOI: 10.1177/1934578X1200700238

The chemical composition of the essential oil obtained from the leaves of Pulicaria undulata Gamal Ed Din (syn P. oriental sensu Schwartz and P. jaubertii Gamal Ed Din) was analyzed by GC-MS. Major compounds of P. undulata oil were the oxygenated monoterpenenes, carvotanacetone (91.4%) and 2,5-dimethoxy-p-cymene (2.6.%). The antimicrobial activity of the essential oil was evaluated against six microorganisms, Escherichia coli Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis, and Candida albicans, using disc diffusion and broth microdilution methods. The oil showed the strongest bactericidal activity against Staphylococcus aureus and methicillin-resistant S. aureus, as well as Candida albicans. The essential oil showed moderate cytotoxic activity against MCF-7 breast tumor cells, with an IC50 of 64.6 ±13.7 μg/mL. Bioautographic assays were used to evaluate the acetylcholinesterase inhibitory effect as well as antifungal activity of the oil against Cladosporium cucumerinum.
IPB Mainnav Search