zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 10.

Publikation

Wessjohann, L. A.; Schneider, A.; Kaluđerović, G. N.; Brandt, W.; Solid-phase synthesis of reduced selenocysteine tetrapeptides and their oxidized analogs containing selenenylsulfide eight-membered rings Mol. Divers. 17, 537-545, (2013) DOI: 10.1007/s11030-013-9454-x

A series of protected and reduced forms of model tetrapeptides that mimic the C-terminus of human thioredoxin reductases were obtained in good yields, using solid-phase peptide synthesis (SPPS). SPPS was performed on the Knorr Amide MBHA resin for Fmoc chemistry using especially protected cystein and selenocystein derivatives. All amino acids have been coupled according to the HBTU/HOBt/DIPEA method. Furthermore, the corresponding oxidized peptides containing eight-membered rings with intramolecular S–S and S–Se bridges were prepared via I2/MeOH or DMSO/TFA oxidation, respectively.
Publikation

Stehle, F.; Götsch, F.; Wray, V.; Schmidt, J.; Strack, D.; Brandt, W.; Snap-shot of Serine Carboxypeptidase-like Acyltransferase Evolution: The Loss of Conserved Disulphide Bridge is Responsible for the Completion of Neo-functionalization J. Phylogenet. Evol. Biol. 1, 115, (2013) DOI: 10.4172/2329-9002.1000115

In this work, it is shown that the At2g23010 gene product encodes 1-O-sinapoyl-β-glucose:1-O-sinapoyl-β-glucose sinapoyltransferase (SST). In contrast to all other functional characterized acyltransferases, the SST protein is highly specific towards this reaction only, and the substrate specificity was correlated to one amino acid substitution. Detailed sequence analysis revealed the lack of the disulphide bond S1 (C78 and C323 in the SMT (sinapoylglucose:malate sinapoyltransferase), that is in SST C80 and D327). The reconstitution of this disulphide bond led to an enzyme accepting many different substrates including disaccharides. Interestingly, the overall changes within the model structures are not very dramatic, but nevertheless, the enzyme models provide some explanations for the broadened substrate specificity: the reconstitution of the disulphide bond provoked more space within the substrate binding pocket simultaneously avoiding electrostatic repulsion. As the SST sequence of A. lyrata also showed the same mutation, the loss of the disulphide bond should has arisen at least 10 mya ago. A Ka/Ks ratio ≤ 1 supports the hypothesis that the loss of this disulphide bond was rather a specification towards a certain reaction than the beginning of a gene death. At the same time, this is also associated with the fixation in the genome.
Publikation

Solé, M.; Brandt, W.; Arnold, U.; Striking stabilization of Rana catesbeiana ribonuclease 3 by guanidine hydrochloride FEBS Lett. 587, 737-742, (2013) DOI: 10.1016/j.febslet.2013.01.056

Unfolding by chemical denaturants and the linear extrapolation method are widely used to determine the free energy of proteins. Ribonuclease 3 from bullfrog shows an extraordinary behavior in guanidinium hydrochloride in comparison to its homologues ribonuclease A and onconase with a high transition midpoint of denaturation but an apparently low cooperativity. The analysis of the interdependence of thermal, urea‐, and guanidine hydrochloride‐induced unfolding revealed that whereas addition of urea resulted in the expected destabilization of all three proteins, guanidine hydrochloride acted diversely: in contrast to ribonuclease A and onconase, both of which were destabilized as expected, low concentrations of guanidine hydrochloride significantly stabilize ribonuclease 3 from bullfrog. This stabilizing effect was endorsed by in silico docking studies.
Publikation

Rausch, F.; Brandt, W.; Schicht, M.; Bräuer, L.; Paulsen, F.; Protein modeling and molecular dynamic studies of two new surfactant proteins J. Cheminform. 5, O2, (2013) DOI: 10.1186/1758-2946-5-S1-O2

0
Publikation

Nickerson, M. L.; Bosley, A. D.; Weiss, J. S.; Kostiha, B. N.; Hirota, Y.; Brandt, W.; Esposito, D.; Kinoshita, S.; Wessjohann, L.; Morham, S. G.; Andresson, T.; Kruth, H. S.; Okano, T.; Dean, M.; The UBIAD1 Prenyltransferase Links Menaquinone-4 Synthesis to Cholesterol Metabolic Enzymes Hum. Mutat. 34, 317-329, (2013) DOI: 10.1002/humu.22230

Schnyder corneal dystrophy (SCD) is an autosomal dominant disease characterized by germline variants in UBIAD1 introducing missense alterations leading to deposition of cholesterol in the cornea, progressive opacification, and loss of visual acuity. UBIAD1 was recently shown to synthesize menaquinone‐4 (MK‐4, vitamin K2), but causal mechanisms of SCD are unknown. We report a novel c.864G>A UBIAD1 mutation altering glycine 177 to glutamic acid (p.G177E) in six SCD families, including four families from Finland who share a likely founder mutation. We observed reduced MK‐4 synthesis by UBIAD1 altered by SCD mutations p.N102S, p.G177R/E, and p.D112N, and molecular models showed p.G177‐mutant UBIAD1 disrupted transmembrane helices and active site residues. We show UBIAD1 interacts with HMGCR and SOAT1, enzymes catalyzing cholesterol synthesis and storage, respectively, using yeast two‐hybrid screening and immunoprecipitation. Docking simulations indicate cholesterol binds to UBIAD1 in the substrate‐binding cleft and substrate‐binding overlaps with GGPP binding, an MK‐4 substrate, suggesting potential competition between these metabolites. Impaired MK‐4 synthesis is a biochemical defect identified in SCD suggesting UBIAD1 links vitamin K and cholesterol metabolism through physical contact between enzymes and metabolites. Our data suggest a role for endogenous MK‐4 in maintaining cornea health and visual acuity.
Publikation

Kopycki, J.; Wieduwild, E.; Kohlschmidt, J.; Brandt, W.; Stepanova, A.; Alonso, J.; Pedras, M. S.; Abel, S.; Grubb, C. D.; Kinetic analysis of Arabidopsis glucosyltransferase UGT74B1 illustrates a general mechanism by which enzymes can escape product inhibition Biochem. J. 450, 37-46, (2013) DOI: 10.1042/BJ20121403

Plant genomes encode numerous small molecule glycosyltransferases which modulate the solubility, activity, immunogenicity and/or reactivity of hormones, xenobiotics and natural products. The products of these enzymes can accumulate to very high concentrations, yet somehow avoid inhibiting their own biosynthesis. Glucosyltransferase UGT74B1 (UDP-glycosyltransferase 74B1) catalyses the penultimate step in the core biosynthetic pathway of glucosinolates, a group of natural products with important functions in plant defence against pests and pathogens. We found that mutation of the highly conserved Ser284 to leucine [wei9-1 (weak ethylene insensitive)] caused only very mild morphological and metabolic phenotypes, in dramatic contrast with knockout mutants, indicating that steady state glucosinolate levels are actively regulated even in unchallenged plants. Analysis of the effects of the mutation via a structural modelling approach indicated that the affected serine interacts directly with UDP-glucose, but also predicted alterations in acceptor substrate affinity and the kcat value, sparking an interest in the kinetic behaviour of the wild-type enzyme. Initial velocity and inhibition studies revealed that UGT74B1 is not inhibited by its glycoside product. Together with the effects of the missense mutation, these findings are most consistent with a partial rapid equilibrium ordered mechanism. This model explains the lack of product inhibition observed both in vitro and in vivo, illustrating a general mechanism whereby enzymes can continue to function even at very high product/precursor ratios.
Publikation

Junker, A.; Fischer, J.; Sichhart, Y.; Brandt, W.; Dräger, B.; Evolution of the key alkaloid enzyme putrescine N-methyltransferase from spermidine synthase Front. Plant Sci. 4, 260, (2013) DOI: 10.3389/fpls.2013.00260

Putrescine N-methyltransferases (PMTs) are the first specific enzymes of the biosynthesis of nicotine and tropane alkaloids. PMTs transfer a methyl group onto the diamine putrescine from S-adenosyl-l-methionine (SAM) as coenzyme. PMT proteins have presumably evolved from spermidine synthases (SPDSs), which are ubiquitous enzymes of polyamine metabolism. SPDSs use decarboxylated SAM as coenzyme to transfer an aminopropyl group onto putrescine. In an attempt to identify possible and necessary steps in the evolution of PMT from SPDS, homology based modeling of Datura stramonium SPDS1 and PMT was employed to gain deeper insight in the preferred binding positions and conformations of the substrate and the alternative coenzymes. Based on predictions of amino acids responsible for the change of enzyme specificities, sites of mutagenesis were derived. PMT activity was generated in D. stramonium SPDS1 after few amino acid exchanges. Concordantly, Arabidopsis thaliana SPDS1 was mutated and yielded enzymes with both, PMT and SPDS activities. Kinetic parameters were measured for enzymatic characterization. The switch from aminopropyl to methyl transfer depends on conformational changes of the methionine part of the coenzyme in the binding cavity of the enzyme. The rapid generation of PMT activity in SPDS proteins and the wide-spread occurrence of putative products of N-methylputrescine suggest that PMT activity is present frequently in the plant kingdom.
Publikation

Jocković, N.; Fischer, W.; Brandsch, M.; Brandt, W.; Dräger, B.; Inhibition of Human Intestinal α-Glucosidases by Calystegines J. Agr. Food Chem. 61, 5550-5557, (2013) DOI: 10.1021/jf4010737

Calystegines are polyhydroxylated nortropane alkaloids found in Convolvulaceae, Solanaceae, and other plant families. These plants produce common fruits and vegetables. The calystegine structures resemble sugars and suggest interaction with enzymes of carbohydrate metabolism. Maltase and sucrase are α-glucosidases contributing to human carbohydrate degradation in the small intestine. Inhibition of these enzymes by orally administered drugs is one option for treatment of diabetes mellitus type 2. In this study, inhibition of maltase and sucrase by calystegines A3 and B2 purified from potatoes was investigated. In silico docking studies confirmed binding of both calystegines to the active sites of the enzymes. Calystegine A3 showed low in vitro enzyme inhibition; calystegine B2 inhibited mainly sucrose activity. Both compounds were not transported by Caco-2 cells indicating low systemic availability. Vegetables rich in calystegine B2 should be further investigated as possible components of a diet preventing a steep increase in blood glucose after a carbohydrate-rich meal.
Publikation

Frick, S.; Nagel, R.; Schmidt, A.; Bodemann, R. R.; Rahfeld, P.; Pauls, G.; Brandt, W.; Gershenzon, J.; Boland, W.; Burse, A.; Metal ions control product specificity of isoprenyl diphosphate synthases in the insect terpenoid pathway Proc. Natl. Acad. Sci. U.S.A. 110, 4194-4199, (2013) DOI: 10.1073/pnas.1221489110

Isoprenyl diphosphate synthases (IDSs) produce the ubiquitous branched-chain diphosphates of different lengths that are precursors of all major classes of terpenes. Typically, individual short-chain IDSs (scIDSs) make the C10, C15, and C20 isoprenyl diphosphates separately. Here, we report that the product length synthesized by a single scIDS shifts depending on the divalent metal cofactor present. This previously undescribed mechanism of carbon chain-length determination was discovered for a scIDS from juvenile horseradish leaf beetles, Phaedon cochleariae. The recombinant enzyme P. cochleariae isoprenyl diphosphate synthase 1 (PcIDS1) yields 96% C10-geranyl diphosphate (GDP) and only 4% C15-farnesyl diphosphate (FDP) in the presence of Co2+ or Mn2+ as a cofactor, whereas it yields only 18% C10 GDP but 82% C15 FDP in the presence of Mg2+. In reaction with Co2+, PcIDS1 has a Km of 11.6 μM for dimethylallyl diphosphate as a cosubstrate and 24.3 μM for GDP. However, with Mg2+, PcIDS1 has a Km of 1.18 μM for GDP, suggesting that this substrate is favored by the enzyme under such conditions. RNAi targeting PcIDS1 revealed the participation of this enzyme in the de novo synthesis of defensive monoterpenoids in the beetle larvae. As an FDP synthase, PcIDS1 could be associated with the formation of sesquiterpenes, such as juvenile hormones. Detection of Co2+, Mn2+, or Mg2+ in the beetle larvae suggests flux control into C10 vs. C15 isoprenoids could be accomplished by these ions in vivo. The dependence of product chain length of scIDSs on metal cofactor identity introduces an additional regulation for these branch point enzymes of terpene metabolism.
Bücher und Buchkapitel

Tennstedt, S.; Fischer, J.; Brandt, W.; Wessjohann, L.; Virtual screening - tools for a faster selection of new drug leads (Jelić, D., ed.). 219-236, (2013)

Successful results in the fields of genomic, proteomic, and metabolomic research pave the way to thousands of protein sequences, many of which may be new clinical targets. The experimental effort to test millions of compounds for a large number of yet invalidated targets is very expensive. In the last decades, virtual screening has become an attractive alternative to precede experimental screening procedures, and thereby to reduce costs considerably. Virtual screening procedures show an enormous potential to suggest new hits and eventually lead structures. The concepts and methods to achieve such predictions are briefly summarized in this chapter. In principle, there are two strategies: if a protein structure is available, protein structure-based virtual screening is possible; the other alternative is ligand-based virtual screening. In recent years, the number of methods developed and software packages available for these tasks has increased considerably. The methods range from unspecific filtering procedures to pharmacophore searches, docking, and scoring. The most relevant current challenges, the limitations, and further perspectives for virtual screening in medicinal chemistry are discussed.
IPB Mainnav Search