zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 15.

Publikation

Lam, Y. T. H.; Hoppe, J.; Dang, Q. N.; Porzel, A.; Soboleva, A.; Brandt, W.; Rennert, R.; Hussain, H.; Davari, M. D.; Wessjohann, L.; Arnold, N.; Purpurascenines A–C, azepino-indole alkaloids from Cortinarius purpurascens: Isolation, biosynthesis, and activity studies on the 5-HT2A receptor J. Nat. Prod. 86, 1373-1384, (2023) DOI: 10.1021/acs.jnatprod.2c00716

Three previously undescribed azepino-indole alkaloids, named purpurascenines A−C (1−3), together with the new-to-nature 7-hydroxytryptophan (4) as well as two known compounds, adenosine (5) and riboflavin (6), were isolated from fruiting bodies of Cortinarius purpurascens Fr. (Cortinariaceae). The structures of 1−3 were elucidated based on spectroscopic analyses and ECD calculations. Furthermore, the biosynthesis of purpurascenine A (1) was investigated by in vivo experiments using 13C-labeled sodium pyruvate, alanine, and sodium acetate incubated with fruiting bodies of C. purpurascens. The incorporation of 13C into 1 was analyzed using 1D NMR and HRESIMS methods. With [3-13C]-pyruvate, a dramatic enrichment of 13C was observed, and hence a biosynthetic route via a direct Pictet−Spengler reaction between α-keto acids and 7-hydroxytryptophan (4) is suggested for the biosynthesis of purpurascenines A−C (1−3). Compound 1 exhibits no antiproliferative or cytotoxic effects against human prostate (PC-3), colorectal (HCT-116), and breast (MCF-7) cancer cells. An in silico docking study confirmed the hypothesis that purpurascenine A (1) could bind to the 5-HT2A serotonin receptor’s active site. A new functional 5-HT2A receptor activation assay showed no functional agonistic but some antagonistic effects of 1 against the 5-HT-dependent 5-HT2A activation and likely antagonistic effects on putative constitutive activity of the 5-HT2A receptor.
Publikation

Moura, P. H. B.; Brandt, W.; Porzel, A.; Martins, R. C. C.; Leal, I. C. R.; Wessjohann, L. A.; Structural elucidation of an atropisomeric entcassiflavan-(4β→8)-epicatechin isolated from Dalbergia monetaria L.f. based on NMR and ECD calculations in comparison to experimental data Molecules 27, 2512, (2022) DOI: 10.3390/molecules27082512

A rare dihydoxyflavan-epicatechin proanthocyanidin, entcassiflavan-(4β→8)-epicatechin, was isolated from Dalbergia monetaria, a plant widely used by traditional people from the Amazon to treat urinary tract infections. The constitution and relative configuration of the compound were elucidated by HR-MS and detailed 1D- and 2D-NMR measurements. By comparing the experimental electronic circular dichroism (ECD) spectrum with the calculated ECD spectra of all 16 possible isomers, the absolute configuration, the interflavan linkage, and the atropisomers could be determined.
Publikation

Zabel, S.; Brandt, W.; Porzel, A.; Athmer, B.; Bennewitz, S.; Schäfer, P.; Kortbeek, R. W. J.; Bleeker, P. M.; Tissier, A.; A single cytochrome P450 oxidase from Solanum habrochaites sequentially oxidizes 7-epi-zingiberene to derivatives toxic to whiteflies and various microorganisms Plant J. 105, 1309-1325, (2021) DOI: 10.1111/tpj.15113

Secretions from glandular trichomes potentially protect plants against a variety of aggressors. In the tomato clade of the Solanum genus, glandular trichomes of wild species produce a rich source of chemical diversity at the leaf surface. Previously, 7-epi-zingiberene produced in several accessions of Solanum habrochaites was found to confer resistance to whiteflies (Bemisia tabaci) and other insect pests. Here, we report the identification and characterisation of 9-hydroxy-zingiberene (9HZ) and 9-hydroxy-10,11-epoxyzingiberene (9H10epoZ), two derivatives of 7-epi-zingiberene produced in glandular trichomes of S. habrochaites LA2167. Using a combination of transcriptomics and genetics, we identified a gene coding for a cytochrome P450 oxygenase, ShCYP71D184, that is highly expressed in trichomes and co-segregates with the presence of the zingiberene derivatives. Transient expression assays in Nicotiana benthamiana showed that ShCYP71D184 carries out two successive oxidations to generate 9HZ and 9H10epoZ. Bioactivity assays showed that 9-hydroxy-10,11-epoxyzingiberene in particular exhibits substantial toxicity against B. tabaci and various microorganisms including Phytophthora infestans and Botrytis cinerea. Our work shows that trichome secretions from wild tomato species can provide protection against a wide variety of organisms. In addition, the availability of the genes encoding the enzymes for the pathway of 7-epi-zingiberene derivatives makes it possible to introduce this trait in cultivated tomato by precision breeding.
Preprints

Zabel, S.; Brandt, W.; Porzel, A.; Athmer, B.; Kortbeek, R. W. J.; Bleeker, P. M.; Tissier, A.; Two novel 7-epi-zingiberene derivatives with biological activity from Solanum habrochaites are produced by a single cytochrome P450 monooxygenase bioRxiv (2020) DOI: 10.1101/2020.04.21.052571

Secretions from glandular trichomes potentially protect the plant against a variety of aggressors. In the tomato genus, wild species constitute a rich source of chemical diversity produced at the leaf surface by glandular trichomes. Previously, 7-epi-zingiberene produced in several accessions of Solanum habrochaites was found to confer resistance to whiteflies (Bemisia tabaci) and other insect pests. Here, we identify two derivatives of 7-epi-zingiberene from S. habrochaites that had not been reported as yet. We identified them as 9-hydroxy-zingiberene and 9-hydroxy-10,11-epoxyzingiberene. Using a combination of genetics and transcriptomics we identified a single cytochrome P450 oxygenase, ShCYP71D184 that carries out two successive oxidations to generate the two sesquiterpenoids. Bioactivity assays showed that only 9-hydroxy-10,11-epoxyzingiberene exhibits substantial toxicity against B. tabaci. In addition, both 9-hydroxy-zingiberene and 9-hydroxy-10,11-epoxyzingiberene display substantial growth inhibitory activities against a range of microorganisms, including Bacillus subtilis, Phytophtora infestans and Botrytis cinerea. Our work shows that trichome secretions from wild tomato species can provide protection against a wide variety of organisms. In addition, the availability of the genes encoding the enzymes for the pathway of 7-epi-zingiberene derivatives makes it possible to introduce this trait in cultivated tomato by precision breeding.
Publikation

Schnabel, A.; Cotinguiba, F.; Athmer, B.; Yang, C.; Westermann, B.; Schaks, A.; Porzel, A.; Brandt, W.; Schumacher, F.; Vogt, T.; A piperic acid CoA ligase produces a putative precursor of piperine, the pungent principle from black pepper fruits Plant J. 102, 569-581, (2020) DOI: 10.1111/tpj.14652

Black pepper (Piper nigrum L.) is known for the high content of piperine, a cinnamoyl amide derivative regarded as largely responsible for the pungent taste of this widely used spice. Despite its long history and worldwide use, the biosynthesis of piperine and related amides has been enigmatic up to now. In this report we describe a specific piperic acid CoA ligase from immature green fruits of P. nigrum. The corresponding enzyme was cloned and functionally expressed in E. coli. The recombinant enzyme displays a high specificity for piperic acid and does not accept the structurally related feruperic acid characterized by a similar C‐2 extension of the general C6‐C3 phenylpropanoid structure. The enzyme is also inactive with the standard set of hydroxycinnamic acids tested including caffeic acid, 4‐coumaric acid, ferulic acid, and sinapic acid. Substrate specificity is corroborated by in silico modeling which suggests a perfect fit of the substrate piperic acid to the active site of the piperic acid CoA ligase. The CoA ligase gene shows highest expression levels in immature green fruits, is also expressed in leaves and flowers, but not in roots. Virus‐induced gene silencing provided some preliminary indications that the production of piperoyl‐CoA is required for the biosynthesis of piperine in black pepper fruits.
Publikation

Otto, A.; Porzel, A.; Westermann, B.; Brandt, W.; Wessjohann, L.; Arnold, N.; Structural and stereochemical elucidation of new hygrophorones from Hygrophorus abieticola (Basidiomycetes) Tetrahedron 73, 1682-1690, (2017) DOI: 10.1016/j.tet.2017.02.013

Four new hygrophorones (1–4) together with the known hygrophorone B12 (5) have been isolated from fruiting bodies of the basidiomycete Hygrophorus abieticola Krieglst. ex Gröger & Bresinsky. Their structures were assigned on the basis of extensive one and two dimensional NMR spectroscopic analyses as well as ESI-HRMS measurements. Among these compounds, two previously undescribed hygrophorone types, named hygrophorone H12 (3) and 2,3-dihydrohygrophorone H12 (4), were identified. The absolute configuration of hygrophorone E12 (2) is suggested based on quantum chemical CD calculations, while a semisynthetic approach in conjunction with computational studies and analysis of NOE interactions allowed the stereochemical assignment of compounds 3 and 4. Additionally, semisynthetic derivatives of hygrophorone B12 (5) were generated by acetylation of the hydroxyl groups. The biological activity of the natural and semisynthetic hygrophorones was evaluated against phytopathogenic organisms, revealing that the α,β-unsaturated carbonyl functionality is likely to be an essential structural feature. Hygrophorone B12 (5) was identified as the most active compound, acting against both ascomycetous fungi and oomycetes.
Publikation

Scheler, U.; Brandt, W.; Porzel, A.; Rothe, K.; Manzano, D.; Božić, D.; Papaefthimiou, D.; Balcke, G. U.; Henning, A.; Lohse, S.; Marillonnet, S.; Kanellis, A. K.; Ferrer, A.; Tissier, A.; Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast Nat. Commun. 7, 12942, (2016) DOI: 10.1038/ncomms12942

Rosemary extracts containing the phenolic diterpenes carnosic acid and its derivative carnosol are approved food additives used in an increasingly wide range of products to enhance shelf-life, thanks to their high anti-oxidant activity. We describe here the elucidation of the complete biosynthetic pathway of carnosic acid and its reconstitution in yeast cells. Cytochrome P450 oxygenases (CYP76AH22-24) from Rosmarinus officinalis and Salvia fruticosa already characterized as ferruginol synthases are also able to produce 11-hydroxyferruginol. Modelling-based mutagenesis of three amino acids in the related ferruginol synthase (CYP76AH1) from S. miltiorrhiza is sufficient to convert it to a 11-hydroxyferruginol synthase (HFS). The three sequential C20 oxidations for the conversion of 11-hydroxyferruginol to carnosic acid are catalysed by the related CYP76AK6-8. The availability of the genes for the biosynthesis of carnosic acid opens opportunities for the metabolic engineering of phenolic diterpenes, a class of compounds with potent anti-oxidant, anti-inflammatory and anti-tumour activities.
Publikation

Otto, A.; Porzel, A.; Schmidt, J.; Brandt, W.; Wessjohann, L.; Arnold, N.; Structure and Absolute Configuration of Pseudohygrophorones A12 and B12, Alkyl Cyclohexenone Derivatives from Hygrophorus abieticola (Basidiomycetes) J. Nat. Prod. 79, 74-80, (2016) DOI: 10.1021/acs.jnatprod.5b00675

Pseudohygrophorones A(12) (1) and B(12) (2), the first naturally occurring alkyl cyclohexenones from a fungal source, and the recently reported hygrophorone B(12) (3) have been isolated from fruiting bodies of the basidiomycete Hygrophorus abieticola Krieglst. ex Gröger & Bresinsky. Their structures were assigned on the basis of extensive one- and two-dimensional NMR spectroscopic analysis as well as ESI-HRMS measurements. The absolute configuration of the three stereogenic centers in the diastereomeric compounds 1 and 2 was established with the aid of (3)JH,H and (4)JH,H coupling constants, NOE interactions, and conformational analysis in conjunction with quantum chemical CD calculations. It was concluded that pseudohygrophorone A(12) (1) is 4S,5S,6S configured, while pseudohygrophorone B(12) (2) was identified as the C-6 epimer of 1, corresponding to the absolute configuration 4S,5S,6R. In addition, the mass spectrometric fragmentation behavior of 1-3 obtained by the higher energy collisional dissociation method allows a clear distinction between the pseudohygrophorones (1 and 2) and hygrophorone B(12) (3). The isolated compounds 1-3 exhibited pronounced activity against phytopathogenic organisms.
Publikation

Fobofou, S. A. T.; Franke, K.; Porzel, A.; Brandt, W.; Wessjohann, L. A.; Tricyclic Acylphloroglucinols from Hypericum lanceolatum and Regioselective Synthesis of Selancins A and B J. Nat. Prod. 79, 743-753, (2016) DOI: 10.1021/acs.jnatprod.5b00673

The chemical investigation of the chloroform extract of Hypericum lanceolatum guided by 1H NMR, ESIMS, and TLC profiles led to the isolation of 11 new tricyclic acylphloroglucinol derivatives, named selancins A–I (1–9) and hyperselancins A and B (10 and 11), along with the known compound 3-O-geranylemodin (12), which is described for a Hypericum species for the first time. Compounds 8 and 9 are the first examples of natural products with a 6-acyl-2,2-dimethylchroman-4-one core fused with a dimethylpyran unit. The new compounds 1–9 are rare acylphloroglucinol derivatives with two fused dimethylpyran units. Compounds 10 and 11 are derivatives of polycyclic polyprenylated acylphloroglucinols related to hyperforin, the active component of St. John’s wort. Their structures were elucidated by UV, IR, extensive 1D and 2D NMR experiments, HRESIMS, and comparison with the literature data. The absolute configurations of 5, 8, 10, and 11 were determined by comparing experimental and calculated electronic circular dichroism spectra. Compounds 1 and 2 were synthesized regioselectively in two steps. The cytotoxicity of the crude extract (88% growth inhibition at 50 μg/mL) and of compounds 1–6, 8, 9, and 12 (no significant growth inhibition up to a concentration of 10 mM) against colon (HT-29) and prostate (PC-3) cancer cell lines was determined. No anthelmintic activity was observed for the crude extract.
Publikation

Farag, M. A.; Al-Mahdy, D. A.; Salah El Dine, R.; Fahmy, S.; Yassin, A.; Porzel, A.; Brandt, W.; Structure-Activity Relationships of Antimicrobial Gallic Acid Derivatives from Pomegranate and Acacia Fruit Extracts against Potato Bacterial Wilt Pathogen Chem. Biodivers. 12, 955-962, (2015) DOI: 10.1002/cbdv.201400194

Bacterial wilts of potato, tomato, pepper, and or eggplant caused by Ralstonia solanacearum are among the most serious plant diseases worldwide. In this study, the issue of developing bactericidal agents from natural sources against R. solanacearum derived from plant extracts was addressed. Extracts prepared from 25 plant species with antiseptic relevance in Egyptian folk medicine were screened for their antimicrobial properties against the potato pathogen R. solancearum by using the disc‐zone inhibition assay and microtitre plate dilution method. Plants exhibiting notable antimicrobial activities against the tested pathogen include extracts from Acacia arabica and Punica granatum. Bioactivity‐guided fractionation of A. arabica and P. granatum resulted in the isolation of bioactive compounds 3,5‐dihydroxy‐4‐methoxybenzoic acid and gallic acid, in addition to epicatechin. All isolates displayed significant antimicrobial activities against R. solanacearum (MIC values 0.5–9 mg/ml), with 3,5‐dihydroxy‐4‐methoxybenzoic acid being the most effective one with a MIC value of 0.47 mg/ml. We further performed a structure–activity relationship (SAR) study for the inhibition of R. solanacearum growth by ten natural, structurally related benzoic acids.
IPB Mainnav Search