zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 20.

Publikationen in Druck

Flores, R., Gago-Zachert, S., De la Peña, M. & Navarro, B. Chrysanthemum chlorotic mottle viroid. In: Viroids and Satellite. - Academic Press (Ed. A. Hadidi, et al.). 331-338, (2017) ISBN: eBook ISBN: 9780128017029; Hardcover ISBN: 9780128014981.


García, M. L., Bó, E. D., da Graça, J. V., Gago-Zachert, S., Hammond, J., Moreno, P., Natsuaki, T., Pallás, V., Navarro, J. A., Reyes, C. A., Luna, G. R., Sasaya, T., Tzanetakis, I. E., Vaira, A. M., Verbeek, M. & ICTV Report Consortium Virus Taxonomy profile: Ophioviridae. J. General Virol. 98 , 1161-1162, (2017) DOI: 10.1099/jgv.0.000836

Ophioviridae,The Ophioviridae is a family of filamentous plant viruses, with single-stranded negative, and possibly ambisense, RNA genomes of 11.3–12.5 kb divided into 3–4 segments, each encapsidated separately. Virions are naked filamentous nucleocapsids, forming kinked circles of at least two different contour lengths. The sole genus, Ophiovirus, includes seven species. Four ophioviruses are soil-transmitted and their natural hosts include trees, shrubs, vegetables and bulbous or corm-forming ornamentals, both monocots and dicots. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the which is available at http://www.ictv.global/report/ophioviridae.

Ziegler, J., Schmidt, S., Strehmel, N., Scheel, D. & Abel, S. Arabidopsis transporter ABCG37/PDR9 contributes primarily highly oxygenated coumarins to root exudation.  Scientific Rep 7, 3704, (2017) DOI: 10.1038/s41598-017-03250-6

The chemical composition of root exudates strongly impacts the interactions of plants with microorganisms in the rhizosphere and the efficiency of nutrient acquisition. Exudation of metabolites is in part mediated by ATP-binding cassette (ABC) transporters. In order to assess the contribution of individual ABC transporters to root exudation, we performed an LC-MS based non-targeted metabolite profiling of semi-polar metabolites accumulating in root exudates of Arabidopsis thaliana plants and mutants deficient in the expression of ABCG36 (PDR8/PEN3), ABCG37 (PDR9) or both transporters. Comparison of the metabolite profiles indicated distinct roles for each ABC transporter in root exudation. Thymidine exudation could be attributed to ABCG36 function, whereas coumarin exudation was strongly reduced only in ABCG37 deficient plants. However, coumarin exudation was compromised in abcg37 mutants only with respect to certain metabolites of this substance class. The specificity of ABCG37 for individual coumarins was further verified by a targeted LC-MS based coumarin profiling method. The response to iron deficiency, which is known to strongly induce coumarin exudation, was also investigated. In either treatment, the distribution of individual coumarins between roots and exudates in the investigated genotypes suggested the involvement of ABCG37 in the exudation specifically of highly oxygenated rather than monohydroxylated coumarins.
Publikationen in Druck

Gantner, J., Ilse, T., Ordon, J., Kretschmer, C., Gruetzner, R., Loefke, C., Dagdas, Y., Buerstenbinder, K., Marillonnet, S. & Stuttmann, J. Peripheral infrastructure vectors and an extended set of plant parts for the modular cloning system.  bioRxiv (2017) DOI: 10.1101/237768

Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. This combinatorial assembly strategy meets the increasingly complex demands in biotechnology and bioengineering, and also represents a cost-efficient and versatile alternative to previous molecular cloning techniques. For Modular Cloning, a collection of commonly used Plant Parts was previously released together with the Modular Cloning toolkit itself, which largely facilitated the adoption of this cloning system in the research community. Here, a collection of approximately 80 additional phytobricks is provided. These phytobricks comprise e.g. modules for inducible expression systems, different promoters or epitope tags, which will increase the versatility of Modular Cloning-based DNA assemblies. Furthermore, first instances of a "peripheral infrastructure" around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. Additionally, DNA modules and assembly strategies for connecting Modular Cloning with Gateway Cloning are presented, which may serve as an interface between available resources and newly adopted hierarchical assembly strategies. The presented material will be provided as a toolkit to the plant research community and will further enhance the usefulness and versatility of Modular Cloning.

Abel, S. Phosphate scouting by root tips. Curr Opin Plant Biol. 39, 168-177, (2017) DOI: 10.1016/j.pbi.2017.04.016

Chemistry assigns phosphate (Pi) dominant roles in metabolism; however, it also renders the macronutrient a genuinely limiting factor of plant productivity. Pi bioavailability is restricted by low Pi mobility in soil and antagonized by metallic toxicities, which force roots to actively seek and selectively acquire the vital element. During the past few years, a first conceptual outline has emerged of the sensory mechanisms at root tips, which monitor external Pi and transmit the edaphic cue to inform root development. This review highlights new aspects of the Pi acquisition strategy of Arabidopsis roots, as well as a framework of local Pi sensing in the context of antagonistic interactions between Pi and its major associated metallic cations, Fe3+ and Al3+.
Publikationen in Druck

Krägeloh, T., Cavalleri, J. M. V., Ziegler, J., Sander, J., Terhardt, M., Breves, G. & Cehak, A. Identification of hypoglycin a binding adsorbents as potential preventive measures in co-grazers of atypical myopathy affected horses. Equine Vet J. (2017) DOI: 10.1111/evj.12723



Intestinal absorption of hypoglycin A (HGA) and its metabolism are considered major prerequisites for atypical myopathy (AM). The increasing incidence and the high mortality rate of AM urgently necessitate new therapeutic and/or preventative approaches.


To identify a substance for oral administration capable of binding HGA in the intestinal lumen and effectively reducing the intestinal absorption of the toxin.

Study design

Experimental in vitro study.


Substances commonly used in equine practice (activated charcoal composition, di-tri-octahedral smectite, mineral oil and activated charcoal) were tested for their binding capacity for HGA using an in vitro incubation method. The substance most effective in binding HGA was subsequently tested for its potential to reduce intestinal HGA absorption. Jejunal tissues of 6 horses were incubated in Ussing chambers to determine mucosal uptake, tissue accumulation, and serosal release of HGA in the presence and absence of the target substance. Potential intestinal metabolism in methylenecyclopropyl acetic acid (MCPA)-conjugates was investigated by analysing their concentrations in samples from the Ussing chambers.


Activated charcoal composition and activated charcoal were identified as potent HGA binding substances with dose and pH dependent binding capacity. There was no evidence of intestinal HGA metabolism.

Main limitations

Binding capacity of adsorbents was tested in vitro using aqueous solutions, and in vivo factors such as transit time and composition of intestinal content, may affect adsorption capacity after oral administration.


For the first time, this study identifies substances capable of reducing HGA intestinal absorption. This might have major implications as a preventive measure in cograzers of AM affected horses but also in horses at an early stage of intoxication.


Liu, S., Ziegler, J., Zeier, J., Birkenbihl, R. P. & Somssich, I. E. Botrytis cinerea B05.10 promotes disease development in Arabidopsis by suppressing WRKY33-mediated host immunity. Plant, Cell Environ. 40(10), 2189-2206, (2017) DOI: 10.1111/pce.13022

The large WRKY transcription factor family is mainly involved in regulating plant immune responses. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic processes towards Botrytis cinerea strain 2100 infection and is essential for resistance. In contrast to B. cinerea strain 2100, the strain B05.10 is virulent on wild-type (WT) Col-0 Arabidopsis plants highlighting the genetic diversity within this pathogen species. We analysed how early WRKY33-dependent responses are affected upon infection with strain B05.10 and found that most of these responses were strongly dampened during this interaction. Ectopic expression of WRKY33 resulted in complete resistance towards this strain indicating that virulence of B05.10, at least partly, depends on suppressing WRKY33 expression/protein accumulation. As a consequence, the expression levels of direct WRKY33 target genes, including those involved in the biosynthesis of camalexin, were also reduced upon infection. Concomitantly, elevated levels of the phytohormone abscisic acid (ABA) were observed. Molecular and genetic studies revealed that ABA negatively influences defence to B05.10 and effects jasmonic acid/ethylene (JA/ET) and salicylic acid (SA) levels. Susceptibility/resistance was determined by the antagonistic effect of ABA on JA, and this crosstalk required suppressing WRKY33 functions at early infection stages. This indicates that B. cinerea B05.10 promotes disease by suppressing WRKY33-mediated host defences.
Bücher und Buchkapitel

White, M. D., Klecker, M., Hopkinson, R. J., Weits, D. A., Mueller, C., Naumann, C., O’Neill, R., Wickens, J., Yang, J., Brooks-Bartlett, J. C., Garman, E. F., Grossmann, T. N., Dissmeyer, N. & Flashman, E. Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets Nature Commun 8, 14690, (2017) DOI: 10.1038/ncomms14690

Crop yield loss due to flooding is a threat to food security. Submergence-induced hypoxia in plants results in stabilization of group VII ETHYLENE RESPONSE FACTORs (ERF-VIIs), which aid survival under these adverse conditions. ERF-VII stability is controlled by the N-end rule pathway, which proposes that ERF-VII N-terminal cysteine oxidation in normoxia enables arginylation followed by proteasomal degradation. The PLANT CYSTEINE OXIDASEs (PCOs) have been identified as catalysts of this oxidation. ERF-VII stabilization in hypoxia presumably arises from reduced PCO activity. We directly demonstrate that PCO dioxygenase activity produces Cys-sulfinic acid at the N terminus of an ERF-VII peptide, which then undergoes efficient arginylation by an arginyl transferase (ATE1). This provides molecular evidence of N-terminal Cys-sulfinic acid formation and arginylation by N-end rule pathway components, and a substrate of ATE1 in plants. The PCOs and ATE1 may be viable intervention targets to stabilize N-end rule substrates, including ERF-VIIs, to enhance submergence tolerance in agriculture.

Dong, H., Dumenil, J., Lu, F.-H., Na, L., Vanhaeren, H., Naumann, C., Klecker, M., Prior, R., Smith, C., McKenzie, N., Saalbach, G., Chen, L., Xia, T., Gonzalez, N., Seguela, M., Inze, D., Dissmeyer, N., Li, Y. & Bevan, M. W. Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis Gen. Dev 31, 197-208, (2017) DOI: 10.1101/gad.292235.116

The characteristic shapes and sizes of organs are established by cell proliferation patterns and final cell sizes, but the underlying molecular mechanisms coordinating these are poorly understood. Here we characterize a ubiquitin-activated peptidase called DA1 that limits the duration of cell proliferation during organ growth in Arabidopsis thaliana. The peptidase is activated by two RING E3 ligases, Big Brother (BB) and DA2, which are subsequently cleaved by the activated peptidase and destabilized. In the case of BB, cleavage leads to destabilization by the RING E3 ligase PROTEOLYSIS 1 (PRT1) of the N-end rule pathway. DA1 peptidase activity also cleaves the deubiquitylase UBP15, which promotes cell proliferation, and the transcription factors TEOSINTE BRANCED 1/CYCLOIDEA/PCF 15 (TCP15) and TCP22, which promote cell proliferation and repress endoreduplication. We propose that DA1 peptidase activity regulates the duration of cell proliferation and the transition to endoreduplication and differentiation during organ formation in plants by coordinating the destabilization of regulatory proteins. 

Möller B., Pöschl Y., Plötner R., Bürstenbinder K. PaCeQuant: A tool for high-throughput quantification of pavement cell shape characteristics. Plant Physiol. 175 (2), 988-1017, (2017) DOI: .org/10.1104/pp.17.00961

Pavement cells (PCs) are the most frequently occurring cell type in the leaf epidermis and play important roles in leaf growth and function. In many plant species, PCs form highly complex jigsaw puzzle shaped cells with interlocking lobes. Understanding of their development is of high interest for plant science research because of their importance for leaf growth and hence for plant fitness and crop yield. Studies of PC development, however, are limited because robust methods are lacking that enable automatic segmentation and quantification of PC shape parameters suitable to reflect their cellular complexity. Here, we present our new ImageJ-based tool, PaCeQuant, which provides a fully automatic image analysis workflow for PC shape quantification. PaCeQuant automatically detects cell boundaries of PCs from confocal input images, and enables manual correction of automatic segmentation results or direct import of manually segmented cells. PaCeQuant simultaneously extracts 27 shape features that include global, contour-based, skeleton-based and PC-specific object descriptors. In addition, we included a method for classification and analysis of lobes at two-cell-junctions and three-cell-junctions, respectively. We provide an R script for graphical visualization and statistical analysis. We validated PaCeQuant by extensive comparative analysis to manual segmentation and existing quantification tools, and demonstrated its usability to analyze PC shape characteristics during development and between different genotypes. PaCeQuant thus provides a platform for robust, efficient and reproducible quantitative analysis of PC shape characteristics that can easily be applied to study PC development in large data sets.
IPB Mainnav Search