zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 18.

Publikation

Ziegler, J.; Schmidt, S.; Strehmel, N.; Scheel, D.; Abel, S.; Arabidopsis Transporter ABCG37/PDR9 contributes primarily highly oxygenated Coumarins to Root Exudation Sci. Rep. 7, 3704, (2017) DOI: 10.1038/s41598-017-03250-6

The chemical composition of root exudates strongly impacts the interactions of plants with microorganisms in the rhizosphere and the efficiency of nutrient acquisition. Exudation of metabolites is in part mediated by ATP-binding cassette (ABC) transporters. In order to assess the contribution of individual ABC transporters to root exudation, we performed an LC-MS based non-targeted metabolite profiling of semi-polar metabolites accumulating in root exudates of Arabidopsis thaliana plants and mutants deficient in the expression of ABCG36 (PDR8/PEN3), ABCG37 (PDR9) or both transporters. Comparison of the metabolite profiles indicated distinct roles for each ABC transporter in root exudation. Thymidine exudation could be attributed to ABCG36 function, whereas coumarin exudation was strongly reduced only in ABCG37 deficient plants. However, coumarin exudation was compromised in abcg37 mutants only with respect to certain metabolites of this substance class. The specificity of ABCG37 for individual coumarins was further verified by a targeted LC-MS based coumarin profiling method. The response to iron deficiency, which is known to strongly induce coumarin exudation, was also investigated. In either treatment, the distribution of individual coumarins between roots and exudates in the investigated genotypes suggested the involvement of ABCG37 in the exudation specifically of highly oxygenated rather than monohydroxylated coumarins.
Publikation

Ziegler, J.; Schmidt, S.; Chutia, R.; Müller, J.; Böttcher, C.; Strehmel, N.; Scheel, D.; Abel, S.; Non-targeted profiling of semi-polar metabolites in Arabidopsis root exudates uncovers a role for coumarin secretion and lignification during the local response to phosphate limitation J. Exp. Bot. 67, 1421-1432, (2016) DOI: 10.1093/jxb/erv539

Plants have evolved two major strategies to cope with phosphate (Pi) limitation. The systemic response, mainly comprising increased Pi uptake and metabolic adjustments for more efficient Pi use, and the local response, enabling plants to explore Pi-rich soil patches by reorganization of the root system architecture. Unlike previous reports, this study focused on root exudation controlled by the local response to Pi deficiency. To approach this, a hydroponic system separating the local and systemic responses was developed. Arabidopsis thaliana genotypes exhibiting distinct sensitivities to Pi deficiency could be clearly distinguished by their root exudate composition as determined by non-targeted reversed-phase ultraperformance liquid chromatography electrospray ionization quadrupole-time-of-flight mass spectrometry metabolite profiling. Compared with wild-type plants or insensitive low phosphate root 1 and 2 (lpr1 lpr2) double mutant plants, the hypersensitive phosphate deficiency response 2 (pdr2) mutant exhibited a reduced number of differential features in root exudates after Pi starvation, suggesting the involvement of PDR2-encoded P5-type ATPase in root exudation. Identification and analysis of coumarins revealed common and antagonistic regulatory pathways between Pi and Fe deficiency-induced coumarin secretion. The accumulation of oligolignols in root exudates after Pi deficiency was inversely correlated with Pi starvation-induced lignification at the root tips. The strongest oligolignol accumulation in root exudates was observed for the insensitive lpr1 lpr2 double mutant, which was accompanied by the absence of Pi deficiency-induced lignin deposition, suggesting a role of LPR ferroxidases in lignin polymerization during Pi starvation.
Publikation

Strehmel, N.; Mönchgesang, S.; Herklotz, S.; Krüger, S.; Ziegler, J.; Scheel, D.; Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana Int. J. Mol. Sci. 17, 1091, (2016) DOI: 10.3390/ijms17071091

Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana’s roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes
Publikation

Maldonado-Bonilla, L. D.; Eschen-Lippold, L.; Gago-Zachert, S.; Tabassum, N.; Bauer, N.; Scheel, D.; Lee, J.; The Arabidopsis Tandem Zinc Finger 9 Protein Binds RNA and Mediates Pathogen-Associated Molecular Pattern-Triggered Immune Responses Plant Cell Physiol. 55, 412-425, (2014) DOI: 10.1093/pcp/pct175

Recognition of pathogen-associated molecular patterns (PAMPs) induces multiple defense mechanisms to limit pathogen growth. Here, we show that the Arabidopsis thaliana tandem zinc finger protein 9 (TZF9) is phosphorylated by PAMP-responsive mitogen-activated protein kinases (MAPKs) and is required to trigger a full PAMP-triggered immune response. Analysis of a tzf9 mutant revealed attenuation in specific PAMP-triggered reactions such as reactive oxygen species accumulation, MAPK activation and, partially, the expression of several PAMP-responsive genes. In accordance with these weaker PAMP-triggered responses, tzf9 mutant plants exhibit enhanced susceptibility to virulent Pseudomonas syringae pv. tomato DC3000. Visualization of TZF9 localization by fusion to green fluorescent protein revealed cytoplasmic foci that co-localize with marker proteins of processing bodies (P-bodies). This localization pattern is affected by inhibitor treatments that limit mRNA availability (such as cycloheximide or actinomycin D) or block nuclear export (leptomycin B). Coupled with its ability to bind the ribohomopolymers poly(rU) and poly(rG), these results suggest involvement of TZF9 in post-transcriptional regulation, such as mRNA processing or storage pathways, to regulate plant innate immunity.
Publikation

Halim, V. A.; Altmann, S.; Ellinger, D.; Eschen-Lippold, L.; Miersch, O.; Scheel, D.; Rosahl, S.; PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid Plant J. 57, 230-242, (2009) DOI: 10.1111/j.1365-313X.2008.03688.x

To elucidate the molecular mechanisms underlying pathogen‐associated molecular pattern (PAMP)‐induced defense responses in potato (Solanum tuberosum ), the role of the signaling compounds salicylic acid (SA) and jasmonic acid (JA) was analyzed. Pep‐13, a PAMP from Phytophthora , induces the accumulation of SA, JA and hydrogen peroxide, as well as the activation of defense genes and hypersensitive‐like cell death. We have previously shown that SA is required for Pep‐13‐induced defense responses. To assess the importance of JA, RNA interference constructs targeted at the JA biosynthetic genes, allene oxide cyclase and 12‐oxophytodienoic acid reductase, were expressed in transgenic potato plants. In addition, expression of the F‐box protein COI1 was reduced by RNA interference. Plants expressing the RNA interference constructs failed to accumulate the respective transcripts in response to wounding or Pep‐13 treatment, neither did they contain significant amounts of JA after elicitation. In response to infiltration of Pep‐13, the transgenic plants exhibited a highly reduced accumulation of reactive oxygen species as well as reduced hypersensitive cell death. The ability of the JA‐deficient plants to accumulate SA suggests that SA accumulation is independent or upstream of JA accumulation. These data show that PAMP responses in potato require both SA and JA and that, in contrast to Arabidopsis, these compounds act in the same signal transduction pathway. Despite their inability to fully respond to PAMP treatment, the transgenic RNA interference plants are not altered in their basal defense against Phytophthora infestans .
Publikation

Mur, L. A.; Kenton, P.; Atzorn, R.; Miersch, O.; Wasternack, C.; The Outcomes of Concentration-Specific Interactions between Salicylate and Jasmonate Signaling Include Synergy, Antagonism, and Oxidative Stress Leading to Cell Death Plant Physiol. 140, 249-262, (2006) DOI: 10.1104/pp.105.072348

Salicylic acid (SA) has been proposed to antagonize jasmonic acid (JA) biosynthesis and signaling. We report, however, that in salicylate hydroxylase-expressing tobacco (Nicotiana tabacum) plants, where SA levels were reduced, JA levels were not elevated during a hypersensitive response elicited by Pseudomonas syringae pv phaseolicola. The effects of cotreatment with various concentrations of SA and JA were assessed in tobacco and Arabidopsis (Arabidopsis thaliana). These suggested that there was a transient synergistic enhancement in the expression of genes associated with either JA (PDF1.2 [defensin] and Thi1.2 [thionin]) or SA (PR1 [PR1a-β-glucuronidase in tobacco]) signaling when both signals were applied at low (typically 10–100 μm) concentrations. Antagonism was observed at more prolonged treatment times or at higher concentrations. Similar results were also observed when adding the JA precursor, α-linolenic acid with SA. Synergic effects on gene expression and plant stress were NPR1- and COI1-dependent, SA- and JA-signaling components, respectively. Electrolyte leakage and Evans blue staining indicated that application of higher concentrations of SA + JA induced plant stress or death and elicited the generation of apoplastic reactive oxygen species. This was indicated by enhancement of hydrogen peroxide-responsive AoPR10-β-glucuronidase expression, suppression of plant stress/death using catalase, and direct hydrogen peroxide measurements. Our data suggests that the outcomes of JA-SA interactions could be tailored to pathogen/pest attack by the relative concentration of each hormone.
Publikation

Kramell, R.; Miersch, O.; Atzorn, R.; Parthier, B.; Wasternack, C.; Octadecanoid-Derived Alteration of Gene Expression and the “Oxylipin Signature” in Stressed Barley Leaves. Implications for Different Signaling Pathways Plant Physiol. 123, 177-188, (2000) DOI: 10.1104/pp.123.1.177

Stress-induced gene expression in barley (Hordeum vulgare cv Salome) leaves has been correlated with temporally changing levels of octadecanoids and jasmonates, quantified by means of gas chromatography/mass spectrometry-single ion monitoring. Application of sorbitol-induced stress led to a low and transient rise of jasmonic acid (JA), its precursor 12-oxophytodienoic acid (OPDA), and the methyl esters JAME and OPDAME, respectively, followed by a large increase in their levels. JA and JAME peaked between 12 and 16 h, about 4 h before OPDA and OPDAME. However, OPDA accumulated up to a 2.5-fold higher level than the other compounds. Dihomo-JA and 9,13-didehydro-OPDA were identified as minor components. Kinetic analyses revealed that a transient threshold of jasmonates or octadecanoids is necessary and sufficient to initiate JA-responsive gene expression. Although OPDA and OPDAME applied exogenously were metabolized to JA in considerable amounts, both of them can induce gene expression, as evidenced by those genes that did not respond to endogenously formed JA. Also, coronatine induces JA-responsive genes independently from endogenous JA. Application of deuterated JA showed that endogenous synthesis of JA is not induced by JA treatment. The data are discussed in terms of distinct signaling pathways.
Publikation

Kenton, P.; Mur, L. A. J.; Atzorn, R.; Wasternack, C.; Draper, J.; (—)-Jasmonic Acid Accumulation in Tobacco Hypersensitive Response Lesions Mol. Plant Microbe Interact. 12, 74-78, (1999) DOI: 10.1094/MPMI.1999.12.1.74

Tobacco infected with Pseudomonas syringae pv. phaseolicola undergoes a hypersensitive response (HR). Jasmonic acid (JA) accumulated within the developing lesion 3 to 9 h after infection and this accumulation preceded protein loss, cell death, and malondialdehyde accumulation. Accumulating JA consisted largely of the (—)-JA stereoisomer and was essentially restricted to the HR lesion.
Publikation

Ortel, B.; Atzorn, R.; Hause, B.; Feussner, I.; Miersch, O.; Wasternack, C.; Jasmonate-induced gene expression of barley (Hordeum vulgare) leaves - the link between jasmonate and abscisic acid Plant Growth Regul. 29, 113-122, (1999) DOI: 10.1023/A:1006212017458

In barley leaves a group of genes is expressed in response to treatment with jasmonates and abscisic acid (ABA) [21]. One of these genes coding for a jasmonate-induced protein of 23 kDa (JIP-23) was analyzed to find out the link between ABA and jasmonates by recording its expression upon modulating independently, the endogenous level of both of them. By use of inhibitors of JA synthesis and ABA degradation, and the ABA-deficient mutant Az34, as well as of cultivar-specific differences, it was shown that endogenous jasmonate increases are necessary and sufficient for expression of this gene. The endogenous rise of ABA did not induce synthesis of JIP-23, whereas exogenous ABA did not act via jasmonates. Different signalling pathways are suggested and discussed.
Publikation

Wasternack, C.; Atzorn, R.; Peña-Cortés, H.; Parthier, B.; Alteration of Gene Expression by Jasmonate and ABA in Tobacco and Tomato J. Plant Physiol. 147, 503-510, (1996) DOI: 10.1016/S0176-1617(96)80038-1

The synthesis of jasmonate-induced proteins in leaves of tobacco (Nicotiana plumbaginifolia) and tomato (Lycopersicon esculentum) was studied in order to find a possible functional link in the actions of abscisic acid (ABA) and jasmonates. ABA-deficient mutants of tobacco (CKR1) and of tomato (sitiens, flacca), and their corresponding wild-types, were compared with respect to endogenous contents of jasmonates and ABA, and polypeptide and transcript patterns in water- or jasmonate-floated leaves, leaves stressed by floating on sorbitol, or by weak desiccation. Our results indicate that in tobacco the synthesis of proteins induced by jasmonate differed from those induced by ABA, whereas in tomato some jasmonate-induced proteins were also induced by ABA. The results provide further evidence that different signalling pathways exist for jasmonate/ABA-responsive gene expression in various plant species.
IPB Mainnav Search