zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 32.


Winkler, M., Niemeyer, M., Hellmuth, A., Janitza, P., Christ, G., Samodelov, S. L., Wilde, V., Majovsky, P., Trujillo, M., Zurbriggen, M. D., Hoehenwarter, W., Quint, M. & Calderón Villalobos, L. I. A. Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction. Nature Commun. 8, 15706, (2017) DOI: 10.1038/ncomms15706

Auxin is a small molecule morphogen that bridges SCFTIR1/AFB-AUX/IAA co-receptor interactions leading to ubiquitylation and proteasome-dependent degradation of AUX/IAA transcriptional repressors. Here, we systematically dissect auxin sensing by SCFTIR1-IAA6 and SCFTIR1-IAA19 co-receptor complexes, and assess IAA6/IAA19 ubiquitylation in vitro and IAA6/IAA19 degradation in vivo. We show that TIR1-IAA19 and TIR1-IAA6 have distinct auxin affinities that correlate with ubiquitylation and turnover dynamics of the AUX/IAA. We establish a system to track AUX/IAA ubiquitylation in IAA6 and IAA19 in vitro and show that it occurs in flexible hotspots in degron-flanking regions adorned with specific Lys residues. We propose that this signature is exploited during auxin-mediated SCFTIR1-AUX/IAA interactions. We present evidence for an evolving AUX/IAA repertoire, typified by the IAA6/IAA19 ohnologues, that discriminates the range of auxin concentrations found in plants. We postulate that the intrinsic flexibility of AUX/IAAs might bias their ubiquitylation and destruction kinetics enabling specific auxin responses.

Trenner, J., Poeschl, Y., Grau, J., Gogol-Döring, A., Quint, M. & Delker, C. Auxin-induced expression divergence between Arabidopsis species may originate within the TIR1/AFB–AUX/IAA–ARF module J. Exp. Bot. 68, 539-552, (2016) DOI: 10.1093/jxb/erw457

Auxin is an essential regulator of plant growth and development, and auxin signaling components are conserved among land plants. Yet, a remarkable degree of natural variation in physiological and transcriptional auxin responses has been described among Arabidopsis thaliana accessions. As intraspecies comparisons offer only limited genetic variation, we here inspect the variation of auxin responses between A. thaliana and A. lyrata. This approach allowed the identification of conserved auxin response genes including novel genes with potential relevance for auxin biology. Furthermore, promoter divergences were analyzed for putative sources of variation. De novo motif discovery identified novel and variants of known elements with potential relevance for auxin responses, emphasizing the complex, and yet elusive, code of element combinations accounting for the diversity in transcriptional auxin responses. Furthermore, network analysis revealed correlations of interspecies differences in the expression of AUX/IAA gene clusters and classic auxin-related genes. We conclude that variation in general transcriptional and physiological auxin responses may originate substantially from functional or transcriptional variations in the TIR1/AFB, AUX/IAA, and ARF signaling network. In that respect, AUX/IAA gene expression divergence potentially reflects differences in the manner in which different species transduce identical auxin signals into gene expression responses.


Quint, M., Delker, C., Franklin, K. A., Wigge, P. A., Halliday, K. J. & van Zanten, M. Molecular and genetic control of plant thermomorphogenesis. Nat Plants 2, 15190, (2016) DOI: 10.1038/nplants.2015.190

Temperature is a major factor governing the distribution and seasonal behaviour of plants. Being sessile, plants are highly responsive to small differences in temperature and adjust their growth and development accordingly. The suite of morphological and architectural changes induced by high ambient temperatures, below the heat-stress range, is collectively called thermomorphogenesis. Understanding the molecular genetic circuitries underlying thermomorphogenesis is particularly relevant in the context of climate change, as this knowledge will be key to rational breeding for thermo-tolerant crop varieties. Until recently, the fundamental mechanisms of temperature perception and signalling remained unknown. Our understanding of temperature signalling is now progressing, mainly by exploiting the model plant Arabidopsis thaliana. The transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) has emerged as a critical player in regulating phytohormone levels and their activity. To control thermomorphogenesis, multiple regulatory circuits are in place to modulate PIF4 levels, activity and downstream mechanisms. Thermomorphogenesis is integrally governed by various light signalling pathways, the circadian clock, epigenetic mechanisms and chromatin-level regulation. In this Review, we summarize recent progress in the field and discuss how the emerging knowledge in Arabidopsis may be transferred to relevant crop systems.

The year 2015 is on track to surpass 2014 as the warmest year ever recorded since systematic temperature measurements began more than a century ago1. In fact, the 10 warmest years on record all occurred after 1998. The fifth report of the Intergovernmental Panel on Climate Change2 projects an increase of 0.8–4.8 °C in global mean surface temperature within the twenty-first century. Such figures are alarming as it is expected that this will strongly affect plant distribution and survival, and therefore threaten biodiversity3,​4,​5,​6,​7,​8,​9,​10,​11. Some studies already indicate that plant species unable to adjust flowering time in response to temperature are disappearing from certain environments5, and species tend to shift to higher altitudes and latitudes12.

Likewise, crop productivity will probably suffer greatly from global warming, while food production is required to increase significantly to sustain a growing and more demanding world population9,13,​14,​15. A meta-analysis summarizing more than 1,700 studies on the effects of climate change and adaptations on crop yields revealed consensus that in the second half of this century, climate warming is likely to have a negative effect on yields of important staple crops13.

Breeding for crop-level adaptations to cope with high temperatures could potentially reverse this negative trend9,13,​14,​15. In several plant species, mechanisms have evolved to adapt growth and morphology to stimulate mitigation of warmth through enhanced evaporative cooling, increased convection and direct avoidance of heat flux from the Sun16,​17,​18,​19,​20. If understood, the underlying molecular processes of these so-called thermomorphogenesis responses could be attractive breeding targets for improving crops to withstand climate warming.

Although abundant literature is available on how plants tolerate extreme heat stress (reviewed in refs 9,21), we are only beginning to understand the molecular mechanisms underlying thermomorphogenesis in response to moderately increased temperatures. A key breakthrough was the identification of the bHLH (basic helix–loop–helix) transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) as a central regulator of ambient temperature signalling in Arabidopsis22. Recent findings have implicated important roles for light signalling pathways, the circadian clock23,​24,​25,​26,​27,​28, auxin22,29,​30,​31 and other phytohormones31,​32,​33,​34 in PIF4-mediated temperature-induced growth. Furthermore, epigenetic mechanisms appear at the nexus of induction35 and attenuation36 of growth acclimation in response to high ambient temperatures.

Here we discuss and integrate recent findings on the molecular networks driving thermomorphogenic adaptations. We will highlight missing links and suggest how the knowledge on Arabidopsis could be transferred to crops. In addition to thermomorphogenesis, adaptation to high ambient temperature also involves physiological processes such as photosynthetic acclimation, respiration and changes in carbon balance. For discussions of these topics as well as on phenological changes including premature flowering, we refer the reader to reviews elsewhere20,37,​38,​39.


Drost, H.-G., Bellstädt, J., Ó'Maoiléidigh, D. S., Silva, A. T., Gabel, A., Weinholdt, C., Ryan, P. T., Dekkers, B. J. W., Bentsink, L., Hilhorst, H. W. M., Ligterink, W., Wellmer, F., Grosse, I. & Quint, M. Post-embryonic Hourglass Patterns Mark Ontogenetic Transitions in Plant Development Mol Biol Evol 33, 1158-1163, (2016) DOI: 10.1093/molbev/msw039

The historic developmental hourglass concept depicts the convergence of animal embryos to a common form during the phylotypic period. Recently, it has been shown that a transcriptomic hourglass is associated with this morphological pattern, consistent with the idea of underlying selective constraints due to intense molecular interactions during body plan establishment. Although plants do not exhibit a morphological hourglass during embryogenesis, a transcriptomic hourglass has nevertheless been identified in the model plant Arabidopsis thaliana. Here, we investigated whether plant hourglass patterns are also found postembryonically. We found that the two main phase changes during the life cycle of Arabidopsis, from embryonic to vegetative and from vegetative to reproductive development, are associated with transcriptomic hourglass patterns. In contrast, flower development, a process dominated by organ formation, is not. This suggests that plant hourglass patterns are decoupled from organogenesis and body plan establishment. Instead, they may reflect general transitions through organizational checkpoints. 


Drost, H.-G., Gabel, A., Grosse, I. & Quint, M. Evidence for Active Maintenance of Phylotranscriptomic Hourglass Patterns in Animal and Plant Embryogenesis Mol Biol Evol 32, 1221-1231, (2015) DOI: 10.1093/molbev/msv012

The developmental hourglass model has been used to describe the morphological transitions of related species throughout embryogenesis. Recently, quantifiable approaches combining transcriptomic and evolutionary information provided novel evidence for the presence of a phylotranscriptomic hourglass pattern across kingdoms. As its biological function is unknown it remains speculative whether this pattern is functional or merely represents a nonfunctional evolutionary relic. The latter would seriously hamper future experimental approaches designed to test hypotheses regarding its function. Here, we address this question by generating transcriptome divergence index (TDI) profiles across embryogenesis of Danio rerio, Drosophila melanogaster, and Arabidopsis thaliana. To enable meaningful evaluation of the resulting patterns, we develop a statistical test that specifically assesses potential hourglass patterns. Based on this objective measure we find that two of these profiles follow a statistically significant hourglass pattern with the most conserved transcriptomes in the phylotypic periods. As the TDI considers only recent evolutionary signals, this indicates that the phylotranscriptomic hourglass pattern is not a rudiment but possibly actively maintained, implicating the existence of some linked biological function associated with embryogenesis in extant species.


Ryan,P. T., Ó’Maoiléidigh, D. S., Drost, H.-G., Kwaśniewska, D., Gabel, A., Grosse, I., Graciet, E., Quint, M. & Wellmer, F. Patterns of gene expression during Arabidopsis flower development from the time of initiation to maturation BMC Genomics 16, 488 , (2015) DOI: 10.1186/s12864-015-1699-6


The formation of flowers is one of the main model systems to elucidate the molecular mechanisms that control developmental processes in plants. Although several studies have explored gene expression during flower development in the model plant Arabidopsis thaliana

on a genome-wide scale, a continuous series of expression data from the earliest floral stages until maturation has been lacking. Here, we used a floral induction system to close

this information gap and to generate a reference dataset for stage-specific gene expression during flower formation.


Using a floral induction system, we collected floral buds at 14 different stages from the time of initiation until maturation. Using whole-genome microarray analysis, we identified 7,405 genes that exhibit rapid expression changes during flower development. These genes comprise many known floral regulators and we found that the expression profiles for these regulators match their known expression patterns, thus validating the dataset. We analyzed groups of

co-expressed genes for over-represented cellular and developmental functions through Gene Ontology analysis and found that they could be assigned specific patterns of activities, which are in agreement with the progression of flower development. Furthermore, by mapping binding sites of floral organ identity factors onto our dataset, we were able to identify gene groups that are likely predominantly under control of these transcriptional regulators. We further

found that the distribution of paralogs among groups of co-expressed genes varies considerably, with genes expressed predominantly at early and intermediate stages of flower development showing the highest proportion of such genes.


Our results highlight and describe the dynamic expression changes undergone by a large numberof genes during flower development. They further provide a comprehensive reference dataset for temporal gene expression during flower formation and we demonstrate that it can be used to integrate data from other genomics approaches such as genome-wide localization studies of transcription factor binding sites.


Raschke, A., Ibañez, C., Ullrich, K., Anwer, M., Becker, S., Glöckner, A., Trenner, J., Denk, K., Saal, B., Sun, X., Ni, M., Davis, S., Delker, C. & Quint, M. Natural variants of ELF3 affect thermomorphogenesis by transcriptionally modulating PIF4-dependent auxin response genes BMC Plant Biol. 15, 197, (2015) DOI: 10.1186/s12870-015-0566-6


Perception and transduction of temperature changes result in altered growth enabling plants to adapt to increased ambient temperature. While PHYTOCHROME-INTERACTING FACTOR4 (PIF4) has been identified as a major ambient temperature signaling hub, its upstream regulation seems complex and is poorly understood. Here, we exploited natural variation for thermo-responsive growth in Arabidopsis thaliana using quantitative trait locus (QTL) analysis.


We identified GIRAFFE2.1, a major QTL explaining ~18 % of the phenotypic variation for temperature-induced hypocotyl elongation in the Bay-0 x Sha recombinant inbred line population. Transgenic complementation demonstrated that allelic variation in the circadian clock regulator EARLY FLOWERING3 (ELF3) is underlying this QTL. The source of variation could be allocated to a single nucleotide polymorphism in the ELF3 coding region, resulting in differential expression of PIF4 and its target genes, likely causing the observed natural variation in thermo-responsive growth.

ConclusionsIn combination with other recent studies, this work establishes the role of ELF3 in the ambient temperature signaling network. Natural variation of ELF3-mediated gating of PIF4 expression during nightly growing periods seems to be affected by a coding sequence quantitative trait nucleotide that confers a selective advantage in certain environments. In addition, natural ELF3 alleles seem to differentially integrate temperature and photoperiod information to induce architectural changes. Thus, ELF3 emerges as an essential coordinator of growth and development in response to diverse environmental cues and implicates ELF3 as an important target of adaptation. 


Grubb, C. D., Zipp, B. J., Kopycki, J., Schubert, M., Quint, M., Lim, E.-K., Bowles, D. J., Pedras, M. S. C. & Abel, S. Comparative analysis of Arabidopsis UGT74 glucosyltransferases reveals a special role of UGT74C1 in glucosinolate biosynthesis Plant J. 79, 92–105, (2014) DOI: 10.1111/tpj.12541

The study of glucosinolates and their regulation has provided a powerful framework for the exploration of fundamental questions about the function, evolution, and ecological significance of plant natural products, but uncertainties about their metabolism remain. Previous work has identified one thiohydroximate S-glucosyltransferase, UGT74B1, with an important role in the core pathway, but also made clear that this enzyme functions redundantly and cannot be the sole UDP-glucose dependent glucosyltransferase (UGT) in glucosinolate synthesis. Here, we present the results of a nearly comprehensive in vitro activity screen of recombinant Arabidopsis Family 1 UGTs, which implicate other members of the UGT74 clade as candidate glucosinolate biosynthetic enzymes. Systematic genetic analysis of this clade indicates that UGT74C1 plays a special role in the synthesis of aliphatic glucosinolates, a conclusion strongly supported by phylogenetic and gene expression analyses. Finally, the ability of UGT74C1 to complement phenotypes and chemotypes of the ugt74b1-2 knockout mutant and to express thiohydroximate UGT activity in planta provides conclusive evidence for UGT74C1 being an accessory enzyme in glucosinolate biosynthesis with a potential function during plant adaptation to environmental challenge.


Delker, C., Sonntag, L., Geo, V. J., Janitza, P., Ibañez, C., Ziermann, H., Peterson, T., Denk, K., Mull, S., Ziegler, J., Davis, S. J., Schneeberger, K. & Quint, M. The DET1-COP1-HY5 Pathway Constitutes a Multipurpose Signaling Module Regulating Plant Photomorphogenesis and Thermomorphogenesis Cell Rep 9, 1983–1989, (2014) DOI: 10.1016/j.celrep.2014.11.043

Developmental plasticity enables plants to respond to elevated ambient temperatures by adapting their shoot architecture. On the cellular level, the basic-helix-loop-helix (bHLH) transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) coordinates this response by activating hormonal modules that in turn regulate growth. In addition to an unknown temperature-sensing mechanism, it is currently not understood how temperature regulates PIF4 activity. Using a forward genetic approach in Arabidopsis thaliana, we present extensive genetic evidence demonstrating that the DE-ETIOLATED 1 (DET1)-CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1)-ELONGATED HYPOCOTYL 5 (HY5)-dependent photomorphogenesis pathway transcriptionally regulates PIF4 to coordinate seedling growth in response to elevated temperature. Our findings demonstrate that two of the most prevalent environmental cues, light and temperature, share a much larger set of signaling components than previously assumed. Similar to the toolbox concept in animal embryonic patterning, multipurpose signaling modules might have evolved in plants to translate various environmental stimuli into adaptational growth processes


Jayaweera, T., Siriwardana, C., Dharmasiri, S., Quint, M., Gray, W. M. & Dharmasiri, N. Alternative Splicing of Arabidopsis IBR5 Pre-mRNA Generates Two IBR5 Isoforms with Distinct and Overlapping Functions PLoS ONE 9, e102301, (2014) DOI: 10.1371/journal.pone.0102301

The INDOLE-3-BUTYRIC ACID RESPONSE5 (IBR5) gene encodes a dual specificity phosphatase that regulates plant auxinresponses. IBR5 has been predicted to generate two transcripts through alternative splicing, but alternative splicing of IBR5has not been confirmed experimentally. The previously characterized ibr5-1 null mutant exhibits many auxin related defectssuch as auxin insensitive primary root growth, defective vascular development, short stature and reduced lateral rootdevelopment. However, whether all these defects are caused by the lack of phosphatase activity is not clear. Here wedescribe two new auxin insensitive IBR5 alleles, ibr5-4, a catalytic site mutant, and ibr5-5, a splice site mutant.Characterization of these new mutants indicates that IBR5 is post-transcriptionally regulated to generate two transcripts,AT2G04550.1 and AT2G04550.3, and consequently two IBR5 isoforms, IBR5.1 and IBR5.3. The IBR5.1 isoform exhibitsphosphatase catalytic activity that is required for both proper degradation of Aux/IAA proteins and auxin-induced geneexpression. These two processes are independently regulated by IBR5.1. Comparison of new mutant alleles with ibr5-1indicates that all three mutant alleles share many phenotypes. However, each allele also confers distinct defects implicatingIBR5 isoform specific functions. Some of these functions are independent of IBR5.1 catalytic activity. Additionally, analysis ofthese new mutant alleles suggests that IBR5 may link ABP1 and SCFTIR1/AFBs auxin signaling pathways.

IPB Mainnav Search