zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 6 von 6.

Publikation

Abel, S.; Savchenko, T.; Levy, M.; Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa BMC Evol. Biol. 5, 72, (2005) DOI: 10.1186/1471-2148-5-72

BackgroundCalcium signaling plays a prominent role in plants for coordinating a wide range of developmental processes and responses to environmental cues. Stimulus-specific generation of intracellular calcium transients, decoding of calcium signatures, and transformation of the signal into cellular responses are integral modules of the transduction process. Several hundred proteins with functions in calcium signaling circuits have been identified, and the number of downstream targets of calcium sensors is expected to increase. We previously identified a novel, calmodulin-binding nuclear protein, IQD1, which stimulates glucosinolate accumulation and plant defense in Arabidopsis thaliana. Here, we present a comparative genome-wide analysis of a new class of putative calmodulin target proteins in Arabidopsis and rice.ResultsWe identified and analyzed 33 and 29 IQD1-like genes in Arabidopsis thaliana and Oryza sativa, respectively. The encoded IQD proteins contain a plant-specific domain of 67 conserved amino acid residues, referred to as the IQ67 domain, which is characterized by a unique and repetitive arrangement of three different calmodulin recruitment motifs, known as the IQ, 1-5-10, and 1-8-14 motifs. We demonstrated calmodulin binding for IQD20, the smallest IQD protein in Arabidopsis, which consists of a C-terminal IQ67 domain and a short N-terminal extension. A striking feature of IQD proteins is the high isoelectric point (~10.3) and frequency of serine residues (~11%). We compared the Arabidopsis and rice IQD gene families in terms of gene structure, chromosome location, predicted protein properties and motifs, phylogenetic relationships, and evolutionary history. The existence of an IQD-like gene in bryophytes suggests that IQD proteins are an ancient family of calmodulin-binding proteins and arose during the early evolution of land plants.ConclusionComparative phylogenetic analyses indicate that the major IQD gene lineages originated before the monocot-eudicot divergence. The extant IQD loci in Arabidopsis primarily resulted from segmental duplication and reflect preferential retention of paralogous genes, which is characteristic for proteins with regulatory functions. Interaction of IQD1 and IQD20 with calmodulin and the presence of predicted calmodulin binding sites in all IQD family members suggest that IQD proteins are a new class of calmodulin targets. The basic isoelectric point of IQD proteins and their frequently predicted nuclear localization suggest that IQD proteins link calcium signaling pathways to the regulation of gene expression. Our comparative genomics analysis of IQD genes and encoded proteins in two model plant species provides the first step towards the functional dissection of this emerging family of putative calmodulin targets.
Publikation

Levy, M.; Rachmilevitch, S.; Abel, S.; Transient Agrobacterium-mediated gene expression in the Arabidopsis hydroponics root system for subcellular localization studies Plant Mol. Biol. Rep. 23, 179-184, (2005) DOI: 10.1007/BF02772708

To a great extent, the cellular compartmentalization and molecular interactions are indicative of the function of a protein. The development of simple and efficient tools for testing the subcellular location of proteins is indispensable to elucidate the function of genes in plants. In this report, we assessed the feasibility ofAgrobacterium-mediated transformation of hydroponically grown roots to follow intracellular targeting of proteins fused to green fluorescent protein (GFP). We developed a simple in planta assay for subcellular localization of proteins inArabidopsis roots via transient transformation and tested this method by expressing a GFP fusion of a known nuclear protein, IQD1. Visualization of transiently expressed GFP fusion proteins in roots by means of confocal microscopy is superior to the analysis of green tissues because the roots are virtually transparent and free of chlorophyll autofluorescence.
Publikation

Levy, M.; Wang, Q.; Kaspi, R.; Parrella, M. P.; Abel, S.; Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense Plant J. 43, 79-96, (2005) DOI: 10.1111/j.1365-313X.2005.02435.x

Glucosinolates are a class of secondary metabolites with important roles in plant defense and human nutrition. To uncover regulatory mechanisms of glucosinolate production, we screened Arabidopsis thaliana T‐DNA activation‐tagged lines and identified a high‐glucosinolate mutant caused by overexpression of IQD1 (At3g09710). A series of gain‐ and loss‐of‐function IQD1 alleles in different accessions correlates with increased and decreased glucosinolate levels, respectively. IQD1 encodes a novel protein that contains putative nuclear localization signals and several motifs known to mediate calmodulin binding, which are arranged in a plant‐specific segment of 67 amino acids, called the IQ67 domain. We demonstrate that an IQD1‐GFP fusion protein is targeted to the cell nucleus and that recombinant IQD1 binds to calmodulin in a Ca2+‐dependent fashion. Analysis of steady‐state messenger RNA levels of glucosinolate pathway genes indicates that IQD1 affects expression of multiple genes with roles in glucosinolate metabolism. Histochemical analysis of tissue‐specific IQD1 ::GUS expression reveals IQD1 promoter activity mainly in vascular tissues of all organs, consistent with the expression patterns of several glucosinolate‐related genes. Interestingly, overexpression of IQD1 reduces insect herbivory, which we demonstrated in dual‐choice assays with the generalist phloem‐feeding green peach aphid (Myzus persicae ), and in weight‐gain assays with the cabbage looper (Trichoplusia ni ), a generalist‐chewing lepidopteran. As IQD1 is induced by mechanical stimuli, we propose IQD1 to be novel nuclear factor that integrates intracellular Ca2+ signals to fine‐tune glucosinolate accumulation in response to biotic challenge.
Publikation

Leopold, J.; Hause, B.; Lehmann, J.; Graner, A.; Parthier, B.; Wasternack, C.; Isolation, characterization and expression of a cDNA coding for a jasmonate-inducible protein of 37 kDa in barley leaves Plant Cell Environ. 19, 675-684, (1996) DOI: 10.1111/j.1365-3040.1996.tb00402.x

In barley leaves, there is a dramatic alteration of gene expression upon treatment with jasmonates leading to the accumulation of newly formed proteins, designated as jasmonate‐inducible proteins (JIPs). In the present study, a new jasmonate‐inducible cDNA, designated pHvJS37, has been isolated by differential screening of a γgt10 cDNA library constructed from mRNA of jasmonate‐treated barley leaf segments. The open reading frame (ORF) encodes a 39‐9 kDa polypeptide which cross‐reacts with antibodies raised against the in vivo JIP‐37. The hydropathic plot suggests that the protein is mainly hydrophilic, containing two hydrophilic domains near the C‐terminus. Database searches did not show any sequence homology of pHv.JS37 to known sequences. Southern analysis revealed at least two genes coding for JIP‐37 which map to the distal portion of the long arm of chromosome 3 and are closely related to genes coding for JIP‐23. The expression pattern of the JIP‐37 genes over time shows differential responses to jasmonate, abscisic acid (ABA), osmotic stress (such as sorbitol treatment) and desiccation stress. No expression was found under salt stress. From experiments using an inhibitor and intermediates of jasmonate synthesis such as α‐linolenic acid and 12‐oxophytodienoic acid, we hypothesize that there is a stress‐induced lipid‐based signalling pathway in which an endogenous rise of jasmonate switches on JIP‐37 gene expression. Using immunocytochemical techniques, JIP‐37 was found to be simultaneously located in the nucleus, the cytoplasm and the vacuoles.
Publikation

Lehmann, J.; Atzorn, R.; Brückner, C.; Reinbothe, S.; Leopold, J.; Wasternack, C.; Parthier, B.; Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments Planta 197, 156-192, (1995) DOI: 10.1007/BF00239952

The accumulation of abundant proteins and their respective transcripts, induced by 10−4 M cisabscisic acid or 10−5 M jasmonic acid methyl ester, was studied in barley (Hordeum vulgare L.) leaf segments and compared to that resulting from osmotic stress caused by floating the segments on solutions of sorbitol, glucose, polyethyleneglycol (PEG)-6000 or NaCl. Osmotic stress or treatment with abscisic acid led to the synthesis of novel proteins which were identical to jasmonateinduced proteins (JIPs) with respect to immunological properties and molecular masses. The most prominent polypeptides were characterized by molecular masses of 66, 37 and 23 kDa and were newly synthesized. Whereas sorbitol, mannitol, sucrose, glucose and PEG provoked the synthesis of JIPs, 2deoxyglucose and NaCl did not. We provide evidence that the synthesis of JIPs induced by osmotic stress is directly correlated with a preceding rise in endogenous jasmonates. These jasmonates, quantified by an enzyme immunoassay specific for (−)jasmonic acid and its aminoacid conjugates, increased remarkably in leaf segments treated with sorbitol, glucose or other sugars. In contrast, no increase in jasmonates could be observed in tissues exposed to salts (NaCl). The results strengthen the hypothesis that the accumulation of jasmonates, probably by de-novo synthesis, is an intermediate and essential step in a signalling pathway between (osmotic) stress and activation of genes coding for polypeptides of high abundance.
Publikation

Wasternack, C.; Atzorn, R.; Leopold, J.; Feussner, I.; Rademacher, W.; Parthier, B.; Synthesis of jasmonate-induced proteins in barley (Hordeum vulgare) is inhibited by the growth retardant tetcyclacis Physiol. Plant. 94, 335-341, (1995) DOI: 10.1111/j.1399-3054.1995.tb05320.x

BarJey leaf segments treated with jasmonate respond with the synthesis of specific proseins, referred to as jasmonate‐induced proteins (JIPs). Application of abscisic acid (ABAl also induced JIP synthesis (Weidhase et al. 1987). In this study the effects of inhibitors on sorbitol‐induced increases of endogenous jasmonates and ABA were investigated. The promotion of jasmonates by sorbitol was inhibited by the growth retardant tetcyclacis at concentrations as low as 1 ftM. In parallel with the decrease of jasmonates, JIP gene expression was reduced as reflected by a decline in the level of a 23‐kDa protein UIP‐23) and mRNAs of JIP‐6 and JIP‐23. 12‐Oxo‐phytodienoic acid, an inlermediale in the lipoxygenase (LOX) pathway leading to jasmonic acid was able to overcome the inhibition by tetcyclacis and increases both the endogenous jasmonate content and transcript accumulation. This suggests that tetcyclacis acts upstream of 12‐oxo‐phytodienoic acid and in keeping with this proposal, an increase in relative LOX activity was detected after tetcyclacis treatment. Although tetcyclacis was shown to inhibit the degradation of ABA to phaseic acid, its effect on jasmonate synthesis is much more pronounced.
IPB Mainnav Search