zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 6 von 6.

Publikation

Grubb, C. D.; Zipp, B. J.; Kopycki, J.; Schubert, M.; Quint, M.; Lim, E.-K.; Bowles, D. J.; Pedras, M. S. C.; Abel, S.; Comparative analysis of Arabidopsis UGT74 glucosyltransferases reveals a special role of UGT74C1 in glucosinolate biosynthesis Plant J. 79, 92-105, (2014) DOI: 10.1111/tpj.12541

The study of glucosinolates and their regulation has provided a powerful framework for the exploration of fundamental questions about the function, evolution, and ecological significance of plant natural products, but uncertainties about their metabolism remain. Previous work has identified one thiohydroximate S‐glucosyltransferase, UGT74B1, with an important role in the core pathway, but also made clear that this enzyme functions redundantly and cannot be the sole UDP‐glucose dependent glucosyltransferase (UGT) in glucosinolate synthesis. Here, we present the results of a nearly comprehensive in vitro activity screen of recombinant Arabidopsis Family 1 UGTs, which implicate other members of the UGT74 clade as candidate glucosinolate biosynthetic enzymes. Systematic genetic analysis of this clade indicates that UGT74C1 plays a special role in the synthesis of aliphatic glucosinolates, a conclusion strongly supported by phylogenetic and gene expression analyses. Finally, the ability of UGT74C1 to complement phenotypes and chemotypes of the ugt74b1‐2 knockout mutant and to express thiohydroximate UGT activity in planta provides conclusive evidence for UGT74C1 being an accessory enzyme in glucosinolate biosynthesis with a potential function during plant adaptation to environmental challenge.
Publikation

Kopycki, J.; Wieduwild, E.; Kohlschmidt, J.; Brandt, W.; Stepanova, A.; Alonso, J.; Pedras, M. S.; Abel, S.; Grubb, C. D.; Kinetic analysis of Arabidopsis glucosyltransferase UGT74B1 illustrates a general mechanism by which enzymes can escape product inhibition Biochem. J. 450, 37-46, (2013) DOI: 10.1042/BJ20121403

Plant genomes encode numerous small molecule glycosyltransferases which modulate the solubility, activity, immunogenicity and/or reactivity of hormones, xenobiotics and natural products. The products of these enzymes can accumulate to very high concentrations, yet somehow avoid inhibiting their own biosynthesis. Glucosyltransferase UGT74B1 (UDP-glycosyltransferase 74B1) catalyses the penultimate step in the core biosynthetic pathway of glucosinolates, a group of natural products with important functions in plant defence against pests and pathogens. We found that mutation of the highly conserved Ser284 to leucine [wei9-1 (weak ethylene insensitive)] caused only very mild morphological and metabolic phenotypes, in dramatic contrast with knockout mutants, indicating that steady state glucosinolate levels are actively regulated even in unchallenged plants. Analysis of the effects of the mutation via a structural modelling approach indicated that the affected serine interacts directly with UDP-glucose, but also predicted alterations in acceptor substrate affinity and the kcat value, sparking an interest in the kinetic behaviour of the wild-type enzyme. Initial velocity and inhibition studies revealed that UGT74B1 is not inhibited by its glycoside product. Together with the effects of the missense mutation, these findings are most consistent with a partial rapid equilibrium ordered mechanism. This model explains the lack of product inhibition observed both in vitro and in vivo, illustrating a general mechanism whereby enzymes can continue to function even at very high product/precursor ratios.
Publikation

Kopycki, J.; Schmidt, J.; Abel, S.; Grubb, C. D.; Chemoenzymatic synthesis of diverse thiohydroximates from glucosinolate-utilizing enzymes from Helix pomatia and Caldicellulosiruptor saccharolyticus Biotechnol. Lett. 33, 1039-1046, (2011) DOI: 10.1007/s10529-011-0530-y

Thiohydroximates comprise a diverse class of compounds important in both biological and industrial chemistry. Their syntheses are generally limited to simple alkyl and aryl compounds with few stereocenters and a narrow range of functional groups. We hypothesized that sequential action of two recombinant enzymes, a sulfatase from Helix pomatia and a β-O-glucosidase from Caldicellulosiruptor saccharolyticus, on glucosinolates would allow synthesis of thiohydroximates from a structurally broad array of abundant precursors. We report successful synthesis of thiohydroximates of varied chemical classes, including from homochiral compounds of demonstrated biological activity. The chemoenzymatic synthetic route reported here should allow access to many, if not all, of the thiohydroximate core structures of the ~200 known naturally occurring glucosinolates. The enrichment of this group for compounds with possible pharmacological potential is discussed.
Publikation

Leopold, J.; Hause, B.; Lehmann, J.; Graner, A.; Parthier, B.; Wasternack, C.; Isolation, characterization and expression of a cDNA coding for a jasmonate-inducible protein of 37 kDa in barley leaves Plant Cell Environ. 19, 675-684, (1996) DOI: 10.1111/j.1365-3040.1996.tb00402.x

In barley leaves, there is a dramatic alteration of gene expression upon treatment with jasmonates leading to the accumulation of newly formed proteins, designated as jasmonate‐inducible proteins (JIPs). In the present study, a new jasmonate‐inducible cDNA, designated pHvJS37, has been isolated by differential screening of a γgt10 cDNA library constructed from mRNA of jasmonate‐treated barley leaf segments. The open reading frame (ORF) encodes a 39‐9 kDa polypeptide which cross‐reacts with antibodies raised against the in vivo JIP‐37. The hydropathic plot suggests that the protein is mainly hydrophilic, containing two hydrophilic domains near the C‐terminus. Database searches did not show any sequence homology of pHv.JS37 to known sequences. Southern analysis revealed at least two genes coding for JIP‐37 which map to the distal portion of the long arm of chromosome 3 and are closely related to genes coding for JIP‐23. The expression pattern of the JIP‐37 genes over time shows differential responses to jasmonate, abscisic acid (ABA), osmotic stress (such as sorbitol treatment) and desiccation stress. No expression was found under salt stress. From experiments using an inhibitor and intermediates of jasmonate synthesis such as α‐linolenic acid and 12‐oxophytodienoic acid, we hypothesize that there is a stress‐induced lipid‐based signalling pathway in which an endogenous rise of jasmonate switches on JIP‐37 gene expression. Using immunocytochemical techniques, JIP‐37 was found to be simultaneously located in the nucleus, the cytoplasm and the vacuoles.
Publikation

Wasternack, C.; Atzorn, R.; Leopold, J.; Feussner, I.; Rademacher, W.; Parthier, B.; Synthesis of jasmonate-induced proteins in barley (Hordeum vulgare) is inhibited by the growth retardant tetcyclacis Physiol. Plant. 94, 335-341, (1995) DOI: 10.1111/j.1399-3054.1995.tb05320.x

BarJey leaf segments treated with jasmonate respond with the synthesis of specific proseins, referred to as jasmonate‐induced proteins (JIPs). Application of abscisic acid (ABAl also induced JIP synthesis (Weidhase et al. 1987). In this study the effects of inhibitors on sorbitol‐induced increases of endogenous jasmonates and ABA were investigated. The promotion of jasmonates by sorbitol was inhibited by the growth retardant tetcyclacis at concentrations as low as 1 ftM. In parallel with the decrease of jasmonates, JIP gene expression was reduced as reflected by a decline in the level of a 23‐kDa protein UIP‐23) and mRNAs of JIP‐6 and JIP‐23. 12‐Oxo‐phytodienoic acid, an inlermediale in the lipoxygenase (LOX) pathway leading to jasmonic acid was able to overcome the inhibition by tetcyclacis and increases both the endogenous jasmonate content and transcript accumulation. This suggests that tetcyclacis acts upstream of 12‐oxo‐phytodienoic acid and in keeping with this proposal, an increase in relative LOX activity was detected after tetcyclacis treatment. Although tetcyclacis was shown to inhibit the degradation of ABA to phaseic acid, its effect on jasmonate synthesis is much more pronounced.
Publikation

Lehmann, J.; Atzorn, R.; Brückner, C.; Reinbothe, S.; Leopold, J.; Wasternack, C.; Parthier, B.; Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments Planta 197, 156-192, (1995) DOI: 10.1007/BF00239952

The accumulation of abundant proteins and their respective transcripts, induced by 10−4 M cisabscisic acid or 10−5 M jasmonic acid methyl ester, was studied in barley (Hordeum vulgare L.) leaf segments and compared to that resulting from osmotic stress caused by floating the segments on solutions of sorbitol, glucose, polyethyleneglycol (PEG)-6000 or NaCl. Osmotic stress or treatment with abscisic acid led to the synthesis of novel proteins which were identical to jasmonateinduced proteins (JIPs) with respect to immunological properties and molecular masses. The most prominent polypeptides were characterized by molecular masses of 66, 37 and 23 kDa and were newly synthesized. Whereas sorbitol, mannitol, sucrose, glucose and PEG provoked the synthesis of JIPs, 2deoxyglucose and NaCl did not. We provide evidence that the synthesis of JIPs induced by osmotic stress is directly correlated with a preceding rise in endogenous jasmonates. These jasmonates, quantified by an enzyme immunoassay specific for (−)jasmonic acid and its aminoacid conjugates, increased remarkably in leaf segments treated with sorbitol, glucose or other sugars. In contrast, no increase in jasmonates could be observed in tissues exposed to salts (NaCl). The results strengthen the hypothesis that the accumulation of jasmonates, probably by de-novo synthesis, is an intermediate and essential step in a signalling pathway between (osmotic) stress and activation of genes coding for polypeptides of high abundance.
IPB Mainnav Search