zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 15.

Publikationen in Druck

Mitra, D., Kumari, P., Quegwer, J., Klemm, S., Moeller, B., Poeschl, Y., Pflug, P., Stamm, G., Abel, S. & Bürstenbinder, K. Microtubule-associated protein IQ67 DOMAIN5 regulates interdigitation of leaf pavement cells in Arabidopsis thaliana bioRxiv (2018) DOI: 10.1101/268466

Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell proliferation and cell morphology. Its organization and dynamics are coordinated by various microtubule-associated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown functions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, subcellular localization and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of IQD5 in pavement cell (PC) shape morphogenesis, as indicated by reduced interdigitation of neighboring cells in the leaf epidermis of iqd5 mutants. Histochemical analysis of cell wall composition further suggests reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced asymmetric expansion. Lastly, we provide evidence for IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays. Our work thus identifies IQD5 as a novel player in PC shape regulation, and, for the first time, links calcium signaling to developmental processes that regulate multi-polar growth in PCs.
Publikation

Bürstenbinder, K., Mitra, D. & Quegwer, J.  Functions of IQD proteins as hubs in cellular calcium and auxin signaling: a toolbox for shape formation and tissue-specification in plants? Plant Signal Behav 12 , e1331198, (2017) DOI: 10.1080/15592324.2017.1331198

Ca2+ ions play pivotal roles as second messengers in intracellular signal transduction, and coordinate many biological processes. Changes in intracellular Ca2+ levels are perceived by Ca2+ sensors such as CaM/CML proteins, which transduce Ca2+ signals into cellular responses by regulation of diverse target proteins. Insights into molecular functions of CaM targets are thus essential to understand the molecular and cellular basis of Ca2+ signaling. During the last decade, IQD proteins emerged as the largest class of CaM targets in plants with mostly unknown functions. In the March issue of Plant Physiology, we presented the first comprehensive characterization of the 33-membered IQD family in Arabidopsis thaliana. We showed, by analysis of the subcellular localization of translational GFP fusion proteins, that most IQD members label MTs, and additionally often localize to the cell nucleus or to membranes, where the recruit CaM Ca2+ sensors. Important functions at MTs are supported by altered MT organization and plant growth in IQD gain-of-function lines. Because IQD proteins share structural hallmarks of scaffold proteins, we propose roles of IQDs in the assembly of macromolecular complexes to orchestrate Ca2+ CaM signaling from membranes to the nucleus. 
Publikation

Bürstenbinder, K., Möller, B., Plötner, R., Stamm, G., Hause, G., Mitra, D. & Abel, S. The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus. Plant Physiol 173, 1692-1708, (2017) DOI: 10.1104/pp.16.01743

Calcium (Ca2+) signaling and dynamic reorganization of the cytoskeleton are essential processes for the coordination and control of plant cell shape and cell growth. Calmodulin (CaM) and closely related CaM-like polypeptides (CML) are principal sensors of Ca2+ signals. CaM/CMLs decode and relay information encrypted by the second messenger via differential interactions with a wide spectrum of targets to modulate their diverse biochemical activities. The plant-specific IQ67-DOMAIN (IQD) family emerged as the possibly largest class of CaM interacting proteins with undefined molecular functions and biological roles. Here, we show that the 33 members of the IQD family in Arabidopsis thaliana differentially localize, using GFP-tagged proteins, to multiple and distinct subcellular sites, including microtubule (MT) arrays, plasma membrane microdomains, and nuclear compartments. Intriguingly, the various IQD-specific localization patterns coincide with the subcellular patterns of IQD-dependent recruitment of CaM, suggesting that the diverse IQD members sequester Ca2+-CaM signaling modules to specific subcellular sites for precise regulation of Ca2+-dependent processes. Because MT localization is a hallmark of most IQD family members, we quantitatively analyzed GFP-labeled MT arrays in tobacco cells transiently expressing GFP-IQD fusions and observed IQD-specific MT patterns, which point to a role of IQDs in MT organization and dynamics. Indeed, stable overexpression of select IQD proteins in Arabidopsis altered cellular MT orientation, cell shape, and organ morphology. Because IQDs share biochemical properties with scaffold proteins, we propose that IQD families provide an assortment of platform proteins for integrating CaM-dependent Ca2+ signaling at multiple cellular sites to regulate cell function, shape, and growth. 

Publikation

Gasperini, D. & Acosta, I. F. and Farmer, E. E. Cotyledon Wounding of Arabidopsis Seedlings. Bio-protocol 6 (2), e1712, (2016)


Publikation

Kowalski, A. M., Gooding, M., Ferrante, A., Slafer, G. A., Orford, S., Gasperini, D. & Griffiths, S. Agronomic assessment of the wheat semi-dwarfing gene Rht8 in contrasting nitrogen treatments and water regimes Field Crop Res 191, 150-160, (2016) DOI: 10.1016/j.fcr.2016.02.026

Reduced height 8 (Rht8) is the main alternative to the GA-insensitive Rht alleles in hot and dry environments where it reduces plant height without yield penalty. The potential of Rht8 in northern-European wheat breeding remains unclear, since the close linkage with the photoperiod-insensitive allele Ppd-D1a is unfavourable in the relatively cool summers. In the present study, two near-isogenic lines (NILs) contrasting for the Rht8/tall allele from Mara in a UK-adapted and photoperiod-sensitive wheat variety were evaluated in trials with varying nitrogen fertiliser (N) treatments and water regimes across sites in the UK and Spain.

The Rht8 introgression was associated with a robust height reduction of 11% regardless of N treatment and water regime and the Rht8 NIL was more resistant to root-lodging at agronomically-relevant N levels than the tall NIL. In the UK with reduced solar radiation over the growing season than the site in Spain, the Rht8 NIL showed a 10% yield penalty at standard agronomic N levels due to concomitant reduction in grain number and spike number whereas grain weight and harvest index were not significantly different to the tall NIL. The yield penalty associated with the Rht8 introgression was overcome at low N and in irrigated conditions in the UK, and in the high-temperature site in Spain. Decreased spike length and constant spikelet number in the Rht8 NIL resulted in spike compaction of 15%, independent of N and water regime. The genetic interval of Rht8 overlaps with the compactum gene on 2DS, raising the possibility of the same causative gene. Further genetic dissection of these loci is required.

Abbreviations

    ANOVA, analysis of variance; Y, yield; HI, harvest index; GN, grain number (m−2); SS, spikelet number (spike−1); SN, spike number (m−2); HD, heading date; AN, anthesis; 12L, length of the second internode from the top; 13L, length of the third internode from the top; PAR, photosynthetically active radiation; R: FR, red: far-red light reflectance ratio; RCBD, randomised complete block design

Publikation

Gasperini, D., Chauvin, A., Acosta, I.F., Kurenda, A., Stolz, S., Chétalat, A., Wolfender J.-L. & Farmer, E.E. Axial and Radial Oxylipin Transport. Plant Physiol. 169, 2244-2254, (2015) DOI: 10.1104/pp.15.01104

0
Publikation

Gasperini, D., Chételat, A., Acosta, I.F., Goossens, J., Pauwels, L., Goossens, A., Dreos, R., Alonso, E. & Farmer, E.E. Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth PLoS Genet. 11 (6), e1005300, (2015) DOI: 10.1371/journal.pgen.1005300

Physical damage can strongly affect plant growth, reducing the biomass of developing organs situated at a distance from wounds. These effects, previously studied in leaves, require the activation of jasmonate (JA) signalling. Using a novel assay involving repetitive cotyledon wounding in Arabidopsis seedlings, we uncovered a function of JA in suppressing cell division and elongation in roots. Regulatory JA signalling components were then manipulated to delineate their relative impacts on root growth. The new transcription factor mutant myc2-322B was isolated. In vitro transcription assays and whole-plant approaches revealed that myc2-322B is a dosage-dependent gain-of-function mutant that can amplify JA growth responses. Moreover, myc2-322B displayed extreme hypersensitivity to JA that totally suppressed root elongation. The mutation weakly reduced root growth in undamaged plants but, when the upstream negative regulator NINJA was genetically removed, myc2-322B powerfully repressed root growth through its effects on cell division and cell elongation. Furthermore, in a JA-deficient mutant background, ninja1 myc2-322B still repressed root elongation, indicating that it is possible to generate JA-responses in the absence of JA. We show that NINJA forms a broadly expressed regulatory layer that is required to inhibit JA signalling in the apex of roots grown under basal conditions. By contrast, MYC2, MYC3 and MYC4 displayed cell layer-specific localisations and MYC3 and MYC4 were expressed in mutually exclusive regions. In nature, growing roots are likely subjected to constant mechanical stress during soil penetration that could lead to JA production and subsequent detrimental effects on growth. Our data reveal how distinct negative regulatory layers, including both NINJA-dependent and -independent mechanisms, restrain JA responses to allow normal root growth. Mechanistic insights from this work underline the importance of mapping JA signalling components to specific cell types in order to understand and potentially engineer the growth reduction that follows physical damage.

Publikation

Müller, J., Toev, T., Heisters, M., Teller, J., Moore, K. L., Hause, G., Dinesh, D. C., Bürstenbinder, K. & Abel, S. Iron-Dependent Callose Deposition Adjusts Root Meristem Maintenance to Phosphate Availability Devel Cell 33, 216–230, (2015) DOI: org/10.1016/j.devcel.2015.02.007

Plant root development is informed by numerous edaphic cues. Phosphate (Pi) availability impacts the root system architecture by adjusting meristem activity. However, the sensory mechanisms monitoring external Pi status are elusive. Two functionally interacting Arabidopsis genes, LPR1 (ferroxidase) and PDR2 (P5-type ATPase), are key players in root Pi sensing, which is modified by iron (Fe) availability. We show that the LPR1-PDR2 module facilitates, upon Pi limitation, cell-specific apoplastic Fe and callose deposition in the meristem and elongation zone of primary roots. Expression of cell-wall-targeted LPR1 determines the sites of Fe accumulation as well as callose production, which interferes with symplastic communication in the stem cell niche, as demonstrated by impaired SHORT-ROOT movement. Antagonistic interactions of Pi and Fe availability control primary root growth via meristem-specific callose formation, likely triggered by LPR1-dependent redox signaling. Our results link callose-regulated cell-to-cell signaling in root meristems to the perception of an abiotic cue

Publikation

Farmer, E.E., Gasperini, D. & Acosta, I.F. The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding New Phytol. 204, 282-288, (2014) DOI: 10.1111/nph.12897

0
Publikation

Ziegler, J., Qwegwer, J., Schubert, M., Erickson, J.L., Schattat, M., Bürstenbinder, K., Grubb, C.D. & Abel, S. Simultaneous analysis of apolar phytohormones and 1-aminocyclopropan-1-carboxylic acid by high performance liquid chromatography/electrospray negative ion tandem mass spectrometry via 9-fluorenylmethoxycarbonyl chloride derivatization J Chromatogr A 1362, 102-109, (2014) DOI: 10.1016/j.chroma.2014.08.029

A strategy to detect and quantify the polar ethylene precursor 1-aminocyclopropan-1-carboxylic acid (ACC) along with the more apolar phytohormones abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), jasmonic acid-isoleucine conjugate (JA-Ile), 12-oxo-phytodienoic acid (OPDA), trans-zeatin, and trans-zeatin 9-riboside using a single extraction is presented. Solid phase resins commonly employed for extraction of phytohormones do not allow the recovery of ACC. We circumvent this problem by attaching an apolar group to ACC via derivatization with the amino group specific reagent 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl). Derivatization in the methanolic crude extract does not modify other phytohormones. The derivatized ACC could be purified and detected together with the more apolar phytohormones using common solid phase extraction resins and reverse phase HPLC/electrospray negative ion tandem mass spectrometry. The limit of detection was in the low nanomolar range for all phytohormones, a sensitivity sufficient to accurately determine the phytohormone levels from less than 50 mg (fresh weight) of Arabidopsis thaliana and Nicotiana benthamiana tissues. Comparison with previously published phytohormone levels and the reported changes in phytohormone levels after stress treatments confirmed the accuracy of the method.

IPB Mainnav Search