zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 17.

Publikation

Iglesias, N. G.; Gago-Zachert, S. P.; Robledo, G.; Costa, N.; Plata, M. I.; Vera, O.; Grau, O.; Semorile, L. C.; Population structure of Citrus tristeza virus from field Argentinean isolates Virus Genes 36, 199-207, (2008) DOI: 10.1007/s11262-007-0169-x

We studied the genetic variability of three genomic regions (p23, p25 and p27 genes) from 11 field Citrus tristeza virus isolates from the two main citrus growing areas of Argentina, a country where the most efficient vector of the virus, Toxoptera citricida, is present for decades. The pathogenicity of the isolates was determinated by biological indexing, single-strand conformation polymorphism analysis showed that most isolates contained high intra-isolate variability. Divergent sequence variants were detected in some isolates, suggesting re-infections of the field plants. Phylogenetic analysis of the predominant sequence variants of each isolate revealed similar grouping of isolates for genes p25 and p27. The analysis of p23 showed two groups contained the severe isolates. Our results showed a high intra-isolate sequence variability suggesting that re-infections could contribute to the observed variability and that the host can play an important role in the selection of the sequence variants present in these isolates.
Publikation

Mur, L. A.; Kenton, P.; Atzorn, R.; Miersch, O.; Wasternack, C.; The Outcomes of Concentration-Specific Interactions between Salicylate and Jasmonate Signaling Include Synergy, Antagonism, and Oxidative Stress Leading to Cell Death Plant Physiol. 140, 249-262, (2006) DOI: 10.1104/pp.105.072348

Salicylic acid (SA) has been proposed to antagonize jasmonic acid (JA) biosynthesis and signaling. We report, however, that in salicylate hydroxylase-expressing tobacco (Nicotiana tabacum) plants, where SA levels were reduced, JA levels were not elevated during a hypersensitive response elicited by Pseudomonas syringae pv phaseolicola. The effects of cotreatment with various concentrations of SA and JA were assessed in tobacco and Arabidopsis (Arabidopsis thaliana). These suggested that there was a transient synergistic enhancement in the expression of genes associated with either JA (PDF1.2 [defensin] and Thi1.2 [thionin]) or SA (PR1 [PR1a-β-glucuronidase in tobacco]) signaling when both signals were applied at low (typically 10–100 μm) concentrations. Antagonism was observed at more prolonged treatment times or at higher concentrations. Similar results were also observed when adding the JA precursor, α-linolenic acid with SA. Synergic effects on gene expression and plant stress were NPR1- and COI1-dependent, SA- and JA-signaling components, respectively. Electrolyte leakage and Evans blue staining indicated that application of higher concentrations of SA + JA induced plant stress or death and elicited the generation of apoplastic reactive oxygen species. This was indicated by enhancement of hydrogen peroxide-responsive AoPR10-β-glucuronidase expression, suppression of plant stress/death using catalase, and direct hydrogen peroxide measurements. Our data suggests that the outcomes of JA-SA interactions could be tailored to pathogen/pest attack by the relative concentration of each hormone.
Bücher und Buchkapitel

Vaira, A. M.; Acotto, G. P.; Gago-Zachert, S.; Garcia, M. L.; Grau, O.; Milne, R. G.; Morikawa, T.; Natsuaki, T.; Torov, V.; Verbeek, M.; Vetten, H. J.; Genus Ophiovirus 673-679, (2005) ISBN: 9780080575483 DOI: 10.1016/B978-0-12-249951-7.50014-6

0
Publikation

Naum-Onganı́a, G.; Gago-Zachert, S.; Peña, E.; Grau, O.; Laura Garcia, M.; Citrus psorosis virus RNA 1 is of negative polarity and potentially encodes in its complementary strand a 24K protein of unknown function and 280K putative RNA dependent RNA polymerase Virus Res. 96, 49-61, (2003) DOI: 10.1016/S0168-1702(03)00172-2

Citrus psorosis virus (CPsV), the type member of genus Ophiovirus, has three genomic RNAs. Complete sequencing of CPsV RNA 1 revealed a size of 8184 nucleotides and Northern blot hybridization with chain specific probes showed that its non-coding strand is preferentially encapsidated. The complementary strand of RNA 1 contains two open reading frames (ORFs) separated by a 109-nt intergenic region, one located near the 5′-end potentially encoding a 24K protein of unknown function, and another of 280K containing the core polymerase motifs characteristic of viral RNA-dependent RNA polymerases (RdRp). Comparison of the core RdRp motifs of negative-stranded RNA viruses, supports grouping CPsV, Ranunculus white mottle virus (RWMV) and Mirafiori lettuce virus (MiLV) within the same genus (Ophiovirus), constituting a monophyletic group separated from all other negative-stranded RNA viruses. Furthermore, RNAs 1 of MiLV, CPsV and RWMV are similar in size and those of MiLV and CPsV also in genomic organization and sequence.
Publikation

Kramell, R.; Miersch, O.; Atzorn, R.; Parthier, B.; Wasternack, C.; Octadecanoid-Derived Alteration of Gene Expression and the “Oxylipin Signature” in Stressed Barley Leaves. Implications for Different Signaling Pathways Plant Physiol. 123, 177-188, (2000) DOI: 10.1104/pp.123.1.177

Stress-induced gene expression in barley (Hordeum vulgare cv Salome) leaves has been correlated with temporally changing levels of octadecanoids and jasmonates, quantified by means of gas chromatography/mass spectrometry-single ion monitoring. Application of sorbitol-induced stress led to a low and transient rise of jasmonic acid (JA), its precursor 12-oxophytodienoic acid (OPDA), and the methyl esters JAME and OPDAME, respectively, followed by a large increase in their levels. JA and JAME peaked between 12 and 16 h, about 4 h before OPDA and OPDAME. However, OPDA accumulated up to a 2.5-fold higher level than the other compounds. Dihomo-JA and 9,13-didehydro-OPDA were identified as minor components. Kinetic analyses revealed that a transient threshold of jasmonates or octadecanoids is necessary and sufficient to initiate JA-responsive gene expression. Although OPDA and OPDAME applied exogenously were metabolized to JA in considerable amounts, both of them can induce gene expression, as evidenced by those genes that did not respond to endogenously formed JA. Also, coronatine induces JA-responsive genes independently from endogenous JA. Application of deuterated JA showed that endogenous synthesis of JA is not induced by JA treatment. The data are discussed in terms of distinct signaling pathways.
Publikation

Ortel, B.; Atzorn, R.; Hause, B.; Feussner, I.; Miersch, O.; Wasternack, C.; Jasmonate-induced gene expression of barley (Hordeum vulgare) leaves - the link between jasmonate and abscisic acid Plant Growth Regul. 29, 113-122, (1999) DOI: 10.1023/A:1006212017458

In barley leaves a group of genes is expressed in response to treatment with jasmonates and abscisic acid (ABA) [21]. One of these genes coding for a jasmonate-induced protein of 23 kDa (JIP-23) was analyzed to find out the link between ABA and jasmonates by recording its expression upon modulating independently, the endogenous level of both of them. By use of inhibitors of JA synthesis and ABA degradation, and the ABA-deficient mutant Az34, as well as of cultivar-specific differences, it was shown that endogenous jasmonate increases are necessary and sufficient for expression of this gene. The endogenous rise of ABA did not induce synthesis of JIP-23, whereas exogenous ABA did not act via jasmonates. Different signalling pathways are suggested and discussed.
Publikation

Kenton, P.; Mur, L. A. J.; Atzorn, R.; Wasternack, C.; Draper, J.; (—)-Jasmonic Acid Accumulation in Tobacco Hypersensitive Response Lesions Mol. Plant Microbe Interact. 12, 74-78, (1999) DOI: 10.1094/MPMI.1999.12.1.74

Tobacco infected with Pseudomonas syringae pv. phaseolicola undergoes a hypersensitive response (HR). Jasmonic acid (JA) accumulated within the developing lesion 3 to 9 h after infection and this accumulation preceded protein loss, cell death, and malondialdehyde accumulation. Accumulating JA consisted largely of the (—)-JA stereoisomer and was essentially restricted to the HR lesion.
Publikation

Gago-Zachert, S.; Costa, N.; Semorile, L.; Grau, O.; Sequence variability in p27 gene of Citrus Tristeza Virus (CTV) revealed by SSCP analysis Electron. J. Biotechnol. 2, 41-50, (1999) DOI: 10.2225/vol2-issue1-fulltext-3

Citrus tristeza closterovirus (CTV), is a phloem-limited virus transmitted by aphids in a semipersistent manner. The genome of CTV is composed of a ssRNA with two capsid proteins: CP, covering about 95% of the particle length, and a diverged coat protein (dCP), present only in one end of the particle, forming a rattlesnake structure. dCP is the product of p27 gene for which it is also postulated a function in the transmissibility by aphid vectors. Hybridization analysis showed a p27 gene region, which exhibits different patterns with two probes derived from two biological distinct CTV isolates. In an attempt to screen whether that gene region differs in mild and severe strains, six CTV isolates belonging to different biogroups were compared for variations in their p27 gene by analysis of single-strand conformation polymorphism (SSCP). The p27 gene was reverse transcribed and amplified by PCR and thirty clones of each isolate were obtained. From each clone, two fragments of the gene were amplified by PCR: fragment (a), 459 bp long, and fragment (b), 281 bp long. Sequence variations in both gene fragments were studied by SSCP analysis. A variety of SSCP patterns was obtained from each isolate, being isolates belonging to the groups II-IV and III those with the higher and lower number of them. Moreover, SSCP analysis provided a rapid procedure to screen the genetic heterogeneity of the viral isolates reducing considerably the amount of nucleic acid sequenciation necessary to gain that knowledge.
Publikation

Wasternack, C.; Atzorn, R.; Peña-Cortés, H.; Parthier, B.; Alteration of Gene Expression by Jasmonate and ABA in Tobacco and Tomato J. Plant Physiol. 147, 503-510, (1996) DOI: 10.1016/S0176-1617(96)80038-1

The synthesis of jasmonate-induced proteins in leaves of tobacco (Nicotiana plumbaginifolia) and tomato (Lycopersicon esculentum) was studied in order to find a possible functional link in the actions of abscisic acid (ABA) and jasmonates. ABA-deficient mutants of tobacco (CKR1) and of tomato (sitiens, flacca), and their corresponding wild-types, were compared with respect to endogenous contents of jasmonates and ABA, and polypeptide and transcript patterns in water- or jasmonate-floated leaves, leaves stressed by floating on sorbitol, or by weak desiccation. Our results indicate that in tobacco the synthesis of proteins induced by jasmonate differed from those induced by ABA, whereas in tomato some jasmonate-induced proteins were also induced by ABA. The results provide further evidence that different signalling pathways exist for jasmonate/ABA-responsive gene expression in various plant species.
Publikation

Peña-Cortés, H.; Prat, S.; Atzorn, R.; Wasternack, C.; Willmitzer, L.; Abscisic acid-deficient plants do not accumulate proteinase inhibitor II following systemin treatment Planta 198, 447-451, (1996) DOI: 10.1007/BF00620062

The role of systemin in Pin2 gene expression was analyzed in wild-type plants of potato (Solanum tuberosum L.) and tomato (Lycopersicon esculentum Mill.), as well as in abscisic acid (ABA)-deficient tomato (sitiens) and potato (droopy) plants. The results showed that systemin initiates Pin2 mRNA accumulation only in wildtype tomato and potato plants. As in the situation after mechanical wounding,Pin2 gene expression in ABA-deficient plants was not activated by systemin. Increased endogenous levels of jasmonic acid (JA) and accumulation of Pin2 mRNA were observed following treatment with α-linolenic acid, the precursor of JA biosynthesis, suggesting that these ABA mutants still have the capability to synthesize de novo JA. Measurement of endogenous levels of ABA and JA showed that systemin leads to an increase of both phytohormones (ABA and JA) only in wild-type but not in ABA-deficient plants.
IPB Mainnav Search