zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 16.

Publikation

Grubb, C. D.; Zipp, B. J.; Kopycki, J.; Schubert, M.; Quint, M.; Lim, E.-K.; Bowles, D. J.; Pedras, M. S. C.; Abel, S.; Comparative analysis of Arabidopsis UGT74 glucosyltransferases reveals a special role of UGT74C1 in glucosinolate biosynthesis Plant J. 79, 92-105, (2014) DOI: 10.1111/tpj.12541

The study of glucosinolates and their regulation has provided a powerful framework for the exploration of fundamental questions about the function, evolution, and ecological significance of plant natural products, but uncertainties about their metabolism remain. Previous work has identified one thiohydroximate S‐glucosyltransferase, UGT74B1, with an important role in the core pathway, but also made clear that this enzyme functions redundantly and cannot be the sole UDP‐glucose dependent glucosyltransferase (UGT) in glucosinolate synthesis. Here, we present the results of a nearly comprehensive in vitro activity screen of recombinant Arabidopsis Family 1 UGTs, which implicate other members of the UGT74 clade as candidate glucosinolate biosynthetic enzymes. Systematic genetic analysis of this clade indicates that UGT74C1 plays a special role in the synthesis of aliphatic glucosinolates, a conclusion strongly supported by phylogenetic and gene expression analyses. Finally, the ability of UGT74C1 to complement phenotypes and chemotypes of the ugt74b1‐2 knockout mutant and to express thiohydroximate UGT activity in planta provides conclusive evidence for UGT74C1 being an accessory enzyme in glucosinolate biosynthesis with a potential function during plant adaptation to environmental challenge.
Publikation

Kopycki, J.; Wieduwild, E.; Kohlschmidt, J.; Brandt, W.; Stepanova, A.; Alonso, J.; Pedras, M. S.; Abel, S.; Grubb, C. D.; Kinetic analysis of Arabidopsis glucosyltransferase UGT74B1 illustrates a general mechanism by which enzymes can escape product inhibition Biochem. J. 450, 37-46, (2013) DOI: 10.1042/BJ20121403

Plant genomes encode numerous small molecule glycosyltransferases which modulate the solubility, activity, immunogenicity and/or reactivity of hormones, xenobiotics and natural products. The products of these enzymes can accumulate to very high concentrations, yet somehow avoid inhibiting their own biosynthesis. Glucosyltransferase UGT74B1 (UDP-glycosyltransferase 74B1) catalyses the penultimate step in the core biosynthetic pathway of glucosinolates, a group of natural products with important functions in plant defence against pests and pathogens. We found that mutation of the highly conserved Ser284 to leucine [wei9-1 (weak ethylene insensitive)] caused only very mild morphological and metabolic phenotypes, in dramatic contrast with knockout mutants, indicating that steady state glucosinolate levels are actively regulated even in unchallenged plants. Analysis of the effects of the mutation via a structural modelling approach indicated that the affected serine interacts directly with UDP-glucose, but also predicted alterations in acceptor substrate affinity and the kcat value, sparking an interest in the kinetic behaviour of the wild-type enzyme. Initial velocity and inhibition studies revealed that UGT74B1 is not inhibited by its glycoside product. Together with the effects of the missense mutation, these findings are most consistent with a partial rapid equilibrium ordered mechanism. This model explains the lack of product inhibition observed both in vitro and in vivo, illustrating a general mechanism whereby enzymes can continue to function even at very high product/precursor ratios.
Publikation

Kopycki, J.; Schmidt, J.; Abel, S.; Grubb, C. D.; Chemoenzymatic synthesis of diverse thiohydroximates from glucosinolate-utilizing enzymes from Helix pomatia and Caldicellulosiruptor saccharolyticus Biotechnol. Lett. 33, 1039-1046, (2011) DOI: 10.1007/s10529-011-0530-y

Thiohydroximates comprise a diverse class of compounds important in both biological and industrial chemistry. Their syntheses are generally limited to simple alkyl and aryl compounds with few stereocenters and a narrow range of functional groups. We hypothesized that sequential action of two recombinant enzymes, a sulfatase from Helix pomatia and a β-O-glucosidase from Caldicellulosiruptor saccharolyticus, on glucosinolates would allow synthesis of thiohydroximates from a structurally broad array of abundant precursors. We report successful synthesis of thiohydroximates of varied chemical classes, including from homochiral compounds of demonstrated biological activity. The chemoenzymatic synthetic route reported here should allow access to many, if not all, of the thiohydroximate core structures of the ~200 known naturally occurring glucosinolates. The enrichment of this group for compounds with possible pharmacological potential is discussed.
Publikation

Mur, L. A.; Kenton, P.; Atzorn, R.; Miersch, O.; Wasternack, C.; The Outcomes of Concentration-Specific Interactions between Salicylate and Jasmonate Signaling Include Synergy, Antagonism, and Oxidative Stress Leading to Cell Death Plant Physiol. 140, 249-262, (2006) DOI: 10.1104/pp.105.072348

Salicylic acid (SA) has been proposed to antagonize jasmonic acid (JA) biosynthesis and signaling. We report, however, that in salicylate hydroxylase-expressing tobacco (Nicotiana tabacum) plants, where SA levels were reduced, JA levels were not elevated during a hypersensitive response elicited by Pseudomonas syringae pv phaseolicola. The effects of cotreatment with various concentrations of SA and JA were assessed in tobacco and Arabidopsis (Arabidopsis thaliana). These suggested that there was a transient synergistic enhancement in the expression of genes associated with either JA (PDF1.2 [defensin] and Thi1.2 [thionin]) or SA (PR1 [PR1a-β-glucuronidase in tobacco]) signaling when both signals were applied at low (typically 10–100 μm) concentrations. Antagonism was observed at more prolonged treatment times or at higher concentrations. Similar results were also observed when adding the JA precursor, α-linolenic acid with SA. Synergic effects on gene expression and plant stress were NPR1- and COI1-dependent, SA- and JA-signaling components, respectively. Electrolyte leakage and Evans blue staining indicated that application of higher concentrations of SA + JA induced plant stress or death and elicited the generation of apoplastic reactive oxygen species. This was indicated by enhancement of hydrogen peroxide-responsive AoPR10-β-glucuronidase expression, suppression of plant stress/death using catalase, and direct hydrogen peroxide measurements. Our data suggests that the outcomes of JA-SA interactions could be tailored to pathogen/pest attack by the relative concentration of each hormone.
Publikation

Kramell, R.; Miersch, O.; Atzorn, R.; Parthier, B.; Wasternack, C.; Octadecanoid-Derived Alteration of Gene Expression and the “Oxylipin Signature” in Stressed Barley Leaves. Implications for Different Signaling Pathways Plant Physiol. 123, 177-188, (2000) DOI: 10.1104/pp.123.1.177

Stress-induced gene expression in barley (Hordeum vulgare cv Salome) leaves has been correlated with temporally changing levels of octadecanoids and jasmonates, quantified by means of gas chromatography/mass spectrometry-single ion monitoring. Application of sorbitol-induced stress led to a low and transient rise of jasmonic acid (JA), its precursor 12-oxophytodienoic acid (OPDA), and the methyl esters JAME and OPDAME, respectively, followed by a large increase in their levels. JA and JAME peaked between 12 and 16 h, about 4 h before OPDA and OPDAME. However, OPDA accumulated up to a 2.5-fold higher level than the other compounds. Dihomo-JA and 9,13-didehydro-OPDA were identified as minor components. Kinetic analyses revealed that a transient threshold of jasmonates or octadecanoids is necessary and sufficient to initiate JA-responsive gene expression. Although OPDA and OPDAME applied exogenously were metabolized to JA in considerable amounts, both of them can induce gene expression, as evidenced by those genes that did not respond to endogenously formed JA. Also, coronatine induces JA-responsive genes independently from endogenous JA. Application of deuterated JA showed that endogenous synthesis of JA is not induced by JA treatment. The data are discussed in terms of distinct signaling pathways.
Publikation

Ortel, B.; Atzorn, R.; Hause, B.; Feussner, I.; Miersch, O.; Wasternack, C.; Jasmonate-induced gene expression of barley (Hordeum vulgare) leaves - the link between jasmonate and abscisic acid Plant Growth Regul. 29, 113-122, (1999) DOI: 10.1023/A:1006212017458

In barley leaves a group of genes is expressed in response to treatment with jasmonates and abscisic acid (ABA) [21]. One of these genes coding for a jasmonate-induced protein of 23 kDa (JIP-23) was analyzed to find out the link between ABA and jasmonates by recording its expression upon modulating independently, the endogenous level of both of them. By use of inhibitors of JA synthesis and ABA degradation, and the ABA-deficient mutant Az34, as well as of cultivar-specific differences, it was shown that endogenous jasmonate increases are necessary and sufficient for expression of this gene. The endogenous rise of ABA did not induce synthesis of JIP-23, whereas exogenous ABA did not act via jasmonates. Different signalling pathways are suggested and discussed.
Publikation

Kenton, P.; Mur, L. A. J.; Atzorn, R.; Wasternack, C.; Draper, J.; (—)-Jasmonic Acid Accumulation in Tobacco Hypersensitive Response Lesions Mol. Plant Microbe Interact. 12, 74-78, (1999) DOI: 10.1094/MPMI.1999.12.1.74

Tobacco infected with Pseudomonas syringae pv. phaseolicola undergoes a hypersensitive response (HR). Jasmonic acid (JA) accumulated within the developing lesion 3 to 9 h after infection and this accumulation preceded protein loss, cell death, and malondialdehyde accumulation. Accumulating JA consisted largely of the (—)-JA stereoisomer and was essentially restricted to the HR lesion.
Publikation

O'Donnell, P. J.; Calvert, C.; Atzorn, R.; Wasternack, C.; Leyser, H. M. O.; Bowles, D. J.; Ethylene as a Signal Mediating the Wound Response of Tomato Plants Science 274, 1914-1917, (1996) DOI: 10.1126/science.274.5294.1914

Plants respond to physical injury, such as that caused by foraging insects, by synthesizing proteins that function in general defense and tissue repair. In tomato plants, one class of wound-responsive genes encodes proteinase inhibitor (pin) proteins shown to block insect feeding. Application of many different factors will induce or inhibit pin gene expression. Ethylene is required in the transduction pathway leading from injury, and ethylene and jasmonates act together to regulate pin gene expression during the wound response.
Publikation

Herde, O.; Atzorn, R.; Fisahn, J.; Wasternack, C.; Willmitzer, L.; Pena-Cortes, H.; Localized Wounding by Heat Initiates the Accumulation of Proteinase Inhibitor II in Abscisic Acid-Deficient Plants by Triggering Jasmonic Acid Biosynthesis Plant Physiol. 112, 853-860, (1996) DOI: 10.1104/pp.112.2.853

To test whether the response to electrical current and heat treatment is due to the same signaling pathway that mediates mechanical wounding, we analyzed the effect of electric-current application and localized burning on proteinase inhibitor II (Pin2) gene expression in both wild-type and abscisic acid (ABA)-deficient tomato (Lycopersicon esculentum Mill.) and potato (Solanum phureja) plants. Electric-current application and localized burning led to the accumulation of Pin2 mRNA in potato and tomato wild-type plants. Among the treatments tested, only localized burning of the leaves led to an accumulation of Pin2 mRNA in the ABA-deficient plants. Electric-current application, like mechanical injury, was able to initiate ABA and jasmonic acid (JA) accumulation in wild-type but not in ABA-deficient plants. In contrast, heat treatment led to an accumulation of JA in both wild-type and ABA-deficient plants. Inhibition of JA biosynthesis by aspirin blocked the heat-induced Pin2 gene expression in tomato wild-type leaves. These results suggest that electric current, similar to mechanical wounding, requires the presence of ABA to induce Pin2 gene expression. Conversely, burning of the leaves activates Pin2 gene expression by directly triggering the biosynthesis of JA by an alternative pathway that is independent of endogenous ABA levels.
Publikation

Wasternack, C.; Atzorn, R.; Peña-Cortés, H.; Parthier, B.; Alteration of Gene Expression by Jasmonate and ABA in Tobacco and Tomato J. Plant Physiol. 147, 503-510, (1996) DOI: 10.1016/S0176-1617(96)80038-1

The synthesis of jasmonate-induced proteins in leaves of tobacco (Nicotiana plumbaginifolia) and tomato (Lycopersicon esculentum) was studied in order to find a possible functional link in the actions of abscisic acid (ABA) and jasmonates. ABA-deficient mutants of tobacco (CKR1) and of tomato (sitiens, flacca), and their corresponding wild-types, were compared with respect to endogenous contents of jasmonates and ABA, and polypeptide and transcript patterns in water- or jasmonate-floated leaves, leaves stressed by floating on sorbitol, or by weak desiccation. Our results indicate that in tobacco the synthesis of proteins induced by jasmonate differed from those induced by ABA, whereas in tomato some jasmonate-induced proteins were also induced by ABA. The results provide further evidence that different signalling pathways exist for jasmonate/ABA-responsive gene expression in various plant species.
IPB Mainnav Search