zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 5 von 5.

Publikation

Schumann, N.; Navarro-Quezada, A.; Ullrich, K.; Kuhl, C.; Quint, M.; Molecular Evolution and Selection Patterns of Plant F-Box Proteins with C-Terminal Kelch Repeats Plant Physiol. 155, 835-850, (2011) DOI: 10.1104/pp.110.166579

The F-box protein superfamily represents one of the largest families in the plant kingdom. F-box proteins phylogenetically organize into numerous subfamilies characterized by their carboxyl (C)-terminal protein-protein interaction domain. Among the largest F-box protein subfamilies in plant genomes are those with C-terminal kelch repeats. In this study, we analyzed the phylogeny and evolution of F-box kelch proteins/genes (FBKs) in seven completely sequenced land plant genomes including a bryophyte, a lycophyte, monocots, and eudicots. While absent in prokaryotes, F-box kelch proteins are widespread in eukaryotes. Nonplant eukaryotes usually contain only a single FBK gene. In land plant genomes, however, FBKs expanded dramatically. Arabidopsis thaliana, for example, contains at least 103 F-box genes with well-conserved C-terminal kelch repeats. The construction of a phylogenetic tree based on the full-length amino acid sequences of the FBKs that we identified in the seven species enabled us to classify FBK genes into unstable/stable/superstable categories. In contrast to superstable genes, which are conserved across all seven species, kelch domains of unstable genes, which are defined as lineage specific, showed strong signatures of positive selection, indicating adaptational potential. We found evidence for conserved protein features such as binding affinities toward A. thaliana SKP1-like adaptor proteins and subcellular localization among closely related FBKs. Pseudogenization seems to occur only rarely, but differential transcriptional regulation of close relatives may result in subfunctionalization.
Publikation

Delker, C.; Pöschl, Y.; Raschke, A.; Ullrich, K.; Ettingshausen, S.; Hauptmann, V.; Grosse, I.; Quint, M.; Natural Variation of Transcriptional Auxin Response Networks in Arabidopsis thaliana Plant Cell 22, 2184-2200, (2010) DOI: 10.1105/tpc.110.073957

Natural variation has been observed for various traits in Arabidopsis thaliana. Here, we investigated natural variation in the context of physiological and transcriptional responses to the phytohormone auxin, a key regulator of plant development. A survey of the general extent of natural variation to auxin stimuli revealed significant physiological variation among 20 genetically diverse natural accessions. Moreover, we observed dramatic variation on the global transcriptome level after induction of auxin responses in seven accessions. Although we detect isolated cases of major-effect polymorphisms, sequencing of signaling genes revealed sequence conservation, making selective pressures that favor functionally different protein variants among accessions unlikely. However, coexpression analyses of a priori defined auxin signaling networks identified variations in the transcriptional equilibrium of signaling components. In agreement with this, cluster analyses of genome-wide expression profiles followed by analyses of a posteriori defined gene networks revealed accession-specific auxin responses. We hypothesize that quantitative distortions in the ratios of interacting signaling components contribute to the detected transcriptional variation, resulting in physiological variation of auxin responses among accessions.
Publikation

Leopold, J.; Hause, B.; Lehmann, J.; Graner, A.; Parthier, B.; Wasternack, C.; Isolation, characterization and expression of a cDNA coding for a jasmonate-inducible protein of 37 kDa in barley leaves Plant Cell Environ. 19, 675-684, (1996) DOI: 10.1111/j.1365-3040.1996.tb00402.x

In barley leaves, there is a dramatic alteration of gene expression upon treatment with jasmonates leading to the accumulation of newly formed proteins, designated as jasmonate‐inducible proteins (JIPs). In the present study, a new jasmonate‐inducible cDNA, designated pHvJS37, has been isolated by differential screening of a γgt10 cDNA library constructed from mRNA of jasmonate‐treated barley leaf segments. The open reading frame (ORF) encodes a 39‐9 kDa polypeptide which cross‐reacts with antibodies raised against the in vivo JIP‐37. The hydropathic plot suggests that the protein is mainly hydrophilic, containing two hydrophilic domains near the C‐terminus. Database searches did not show any sequence homology of pHv.JS37 to known sequences. Southern analysis revealed at least two genes coding for JIP‐37 which map to the distal portion of the long arm of chromosome 3 and are closely related to genes coding for JIP‐23. The expression pattern of the JIP‐37 genes over time shows differential responses to jasmonate, abscisic acid (ABA), osmotic stress (such as sorbitol treatment) and desiccation stress. No expression was found under salt stress. From experiments using an inhibitor and intermediates of jasmonate synthesis such as α‐linolenic acid and 12‐oxophytodienoic acid, we hypothesize that there is a stress‐induced lipid‐based signalling pathway in which an endogenous rise of jasmonate switches on JIP‐37 gene expression. Using immunocytochemical techniques, JIP‐37 was found to be simultaneously located in the nucleus, the cytoplasm and the vacuoles.
Publikation

Wasternack, C.; Atzorn, R.; Leopold, J.; Feussner, I.; Rademacher, W.; Parthier, B.; Synthesis of jasmonate-induced proteins in barley (Hordeum vulgare) is inhibited by the growth retardant tetcyclacis Physiol. Plant. 94, 335-341, (1995) DOI: 10.1111/j.1399-3054.1995.tb05320.x

BarJey leaf segments treated with jasmonate respond with the synthesis of specific proseins, referred to as jasmonate‐induced proteins (JIPs). Application of abscisic acid (ABAl also induced JIP synthesis (Weidhase et al. 1987). In this study the effects of inhibitors on sorbitol‐induced increases of endogenous jasmonates and ABA were investigated. The promotion of jasmonates by sorbitol was inhibited by the growth retardant tetcyclacis at concentrations as low as 1 ftM. In parallel with the decrease of jasmonates, JIP gene expression was reduced as reflected by a decline in the level of a 23‐kDa protein UIP‐23) and mRNAs of JIP‐6 and JIP‐23. 12‐Oxo‐phytodienoic acid, an inlermediale in the lipoxygenase (LOX) pathway leading to jasmonic acid was able to overcome the inhibition by tetcyclacis and increases both the endogenous jasmonate content and transcript accumulation. This suggests that tetcyclacis acts upstream of 12‐oxo‐phytodienoic acid and in keeping with this proposal, an increase in relative LOX activity was detected after tetcyclacis treatment. Although tetcyclacis was shown to inhibit the degradation of ABA to phaseic acid, its effect on jasmonate synthesis is much more pronounced.
Publikation

Lehmann, J.; Atzorn, R.; Brückner, C.; Reinbothe, S.; Leopold, J.; Wasternack, C.; Parthier, B.; Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments Planta 197, 156-192, (1995) DOI: 10.1007/BF00239952

The accumulation of abundant proteins and their respective transcripts, induced by 10−4 M cisabscisic acid or 10−5 M jasmonic acid methyl ester, was studied in barley (Hordeum vulgare L.) leaf segments and compared to that resulting from osmotic stress caused by floating the segments on solutions of sorbitol, glucose, polyethyleneglycol (PEG)-6000 or NaCl. Osmotic stress or treatment with abscisic acid led to the synthesis of novel proteins which were identical to jasmonateinduced proteins (JIPs) with respect to immunological properties and molecular masses. The most prominent polypeptides were characterized by molecular masses of 66, 37 and 23 kDa and were newly synthesized. Whereas sorbitol, mannitol, sucrose, glucose and PEG provoked the synthesis of JIPs, 2deoxyglucose and NaCl did not. We provide evidence that the synthesis of JIPs induced by osmotic stress is directly correlated with a preceding rise in endogenous jasmonates. These jasmonates, quantified by an enzyme immunoassay specific for (−)jasmonic acid and its aminoacid conjugates, increased remarkably in leaf segments treated with sorbitol, glucose or other sugars. In contrast, no increase in jasmonates could be observed in tissues exposed to salts (NaCl). The results strengthen the hypothesis that the accumulation of jasmonates, probably by de-novo synthesis, is an intermediate and essential step in a signalling pathway between (osmotic) stress and activation of genes coding for polypeptides of high abundance.
IPB Mainnav Search