zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 17.

Publikation

Abel, S.; Theologis, A.; Odyssey of Auxin Cold Spring Harb. Perspect. Biol. 2, a004572, (2010) DOI: 10.1101/cshperspect.a004572

The history of plant biology is inexorably intertwined with the conception and discovery of auxin, followed by the many decades of research to comprehend its action during growth and development. Growth responses to auxin are complex and require the coordination of auxin production, transport, and perception. In this overview of past auxin research, we limit our discourse to the mechanism of auxin action. We attempt to trace the almost epic voyage from the birth of the hormonal concept in plants to the recent crystallographic studies that resolved the TIR1-auxin receptor complex, the first structural model of a plant hormone receptor. The century-long endeavor is a beautiful illustration of the power of scientific reasoning and human intuition, but it also brings to light the fact that decisive progress is made when new technologies emerge and disciplines unite.
Publikation

Fonseca, S.; Chini, A.; Hamberg, M.; Adie, B.; Porzel, A.; Kramell, R.; Miersch, O.; Wasternack, C.; Solano, R.; (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate Nat. Chem. Biol. 5, 344-350, (2009) DOI: 10.1038/nchembio.161

Hormone-triggered activation of the jasmonate signaling pathway in Arabidopsis thaliana requires SCFCOI1-mediated proteasome degradation of JAZ repressors. (−)-JA-L-Ile is the proposed bioactive hormone, and SCFCOI1 is its likely receptor. We found that the biological activity of (−)-JA-L-Ile is unexpectedly low compared to coronatine and the synthetic isomer (+)-JA-L-Ile, which suggests that the stereochemical orientation of the cyclopentanone-ring side chains greatly affects receptor binding. Detailed GC-MS and HPLC analyses showed that the (−)-JA-L-Ile preparations currently used in ligand binding studies contain small amounts of the C7 epimer (+)-7-iso-JA-L-Ile. Purification of each of these molecules demonstrated that pure (−)-JA-L-Ile is inactive and that the active hormone is (+)-7-iso-JA-L-Ile, which is also structurally more similar to coronatine. In addition, we show that pH changes promote conversion of (+)-7-iso-JA-L-Ile to the inactive (−)-JA-L-Ile form, thus providing a simple mechanism that can regulate hormone activity through epimerization.
Publikation

BERGER, S.; Weichert, H.; Porzel, A.; Wasternack, C.; Kühn, H.; Feussner, I.; Enzymatic and non-enzymatic lipid peroxidation in leaf development BBA-Mol. Cell Biol. Lipids 1533, 266-276, (2001) DOI: 10.1016/S1388-1981(01)00161-5

Enzymatic and non-enzymatic lipid peroxidation has been implicated in programmed cell death, which is a major process of leaf senescence. To test this hypothesis we developed a high-performance liquid chromatography (HPLC) method for a simultaneous analysis of the major hydro(pero)xy polyenoic fatty acids. Quantities of lipid peroxidation products in leaves of different stages of development including natural senescence indicated a strong increase in the level of oxygenated polyenoic fatty acids (PUFAs) during the late stages of leaf senescence. Comprehensive structural elucidation of the oxygenation products by means of HPLC, gas chromatography/mass spectrometry and 1H nuclear magnetic resonance suggested a non-enzymatic origin. However, in some cases a small share of specifically oxidized PUFAs was identified suggesting involvement of lipid peroxidizing enzymes. To inspect the possible role of enzymatic lipid peroxidation in leaf senescence, we analyzed the abundance of lipoxygenases (LOXs) in rosette leaves of Arabidopsis. LOXs and their product (9Z,11E,13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoic acid were exclusively detected in young green leaves. In contrast, in senescing leaves the specific LOX products were overlaid by large amounts of stereo-random lipid peroxidation products originating from non-enzymatic oxidation. These data indicate a limited contribution of LOXs to total lipid peroxidation, and a dominant role of non-enzymatic lipid peroxidation in late stages of leaf development.
Publikation

Morgan, K. E.; Zarembinski, T. I.; Theologis, A.; Abel, S.; Biochemical characterization of recombinant polypeptides corresponding to the predicted βαα fold in Aux/IAA proteins FEBS Lett. 454, 283-287, (1999) DOI: 10.1016/S0014-5793(99)00819-4

The plant hormone indoleacetic acid (IAA or auxin) transcriptionally activates a select set of early genes. The Auxl IAA class of early auxin-responsive genes encodes a large family of short-lived, nuclear proteins. Aux/IAA polypeptides homo-and heterodimerize, and interact with auxin-response transcription factors (ARFs) via C-terminal regions conserved in both protein families. This shared region contains a predicted βαα motif similar to the prokaryotic β-Ribbon DNA binding domain, which mediates both protein dimerization and DNA recognition. Here, we show by circular dichroism spectroscopy and by chemical cross-linking experiments that recombinant peptides corresponding to the predicted βαα region of three Aux/IAA proteins from Arabidopsis thaliana contain substantial α-helical secondary structure and undergo homo- and heterotypic interactions in vitro. Our results indicate a similar biochemical function of the plant βαα domain and suggest that the βαα fold plays an important role in mediating combinatorial interactions of Aux/IAA and ARF proteins to specifically regulate secondary gene expression in response to auxin.
Publikation

Miersch, O.; Porzel, A.; Wasternack, C.; Microbial conversion of jasmonates - hydroxylations by Aspergillus niger Phytochemistry 50, 1147-1152, (1999) DOI: 10.1016/S0031-9422(98)00698-0

Aspergillus niger is able to hydroxylate the pentenyl side chain of (−)-jasmonic acid (JA) leading to (11S)- (−)-hydroxy-JA/ (11R)- (−)-hydroxy-JA (2:1) and (−)-11,12-didehydro-JA. Methyl (−)-jasmonate (JA-Me) is converted upon hydrolysis. During prolonged cultivation or at non-optimized isolation procedures, the 11-hydroxy- (9Z)-pentenyl side chain may isomerize to (10E)-9-hydroxy- and (9E)-11-hydroxy-compounds by allylic rearrangement. The fungus hydroxylates (±)-9,10-dihydro-JA at position C-11 into 11j-hydroxy-9,10-dihydro-JA. As JA-Me, the methyl dihydro-JA is hydroxylated only upon hydrolysis into the free acid.
Publikation

Kramell, R.; Porzel, A.; Miersch, O.; Schneider, G.; Wasternack, C.; Chromatographic resolution of peptide-like conjugates of jasmonic acid and of cucurbic acid isomers J. Chromatogr. A 847, 103-107, (1999) DOI: 10.1016/S0021-9673(99)00335-0

The chiral separation of peptide-like conjugates of jasmonic acid and of cucurbic acid isomers was investigated by liquid chromatography on Chiralpak AS and Nucleodex β-PM. The retention sequences reflect distinct chromatographic properties with respect to the chirality of the jasmonic acid part or of the cucurbic acid isomers. The chromatographic behaviour of the amide conjugates on a reversed-phase C18 column provides evidence for the resolution of diastereomeric conjugates depending on the chirality of both constituents of the conjugate molecule. The chromatographic procedures are suitable for the analytical and preparative separation of such conjugates.
Bücher und Buchkapitel

Kramell, R.; Porzel, A.; Miersch, O.; Schneider, G.; Characterization of Isoleucine Conjugates of Cucurbic Acid Isomers by Reversed-Phase and Chiral High-Performance Liquid Chromatography 77-78, (1998)

0
Bücher und Buchkapitel

Feussner, I.; Balkenhohl, T. J.; Porzel, A.; Kühn, H.; Wasternack, C.; Structural Elucidation of Oxygenated Triacylglycerols in Cucumber and Sunflower Cotyledons 57-58, (1998)

0
Publikation

Feussner, I.; Balkenhohl, T. J.; Porzel, A.; Kühn, H.; Wasternack, C.; Structural Elucidation of Oxygenated Storage Lipids in Cucumber Cotyledons J. Biol. Chem. 272, 21635-21641, (1997) DOI: 10.1074/jbc.272.34.21635

At early stages of germination, a special lipoxygenase is expressed in cotyledons of cucumber and several other plants. This enzyme is localized at the lipid storage organelles and oxygenates their storage triacylglycerols. We have isolated this lipid body lipoxygenase from cucumber seedlings and found that it is capable of oxygenating in vitro di- and trilinolein to the corresponding mono-, di-, and trihydroperoxy derivatives. To investigate the in vivo activity of this enzyme during germination, lipid bodies were isolated from cucumber seedlings at different stages of germination, and the triacylglycerols were analyzed for oxygenated derivatives by a combination of high pressure liquid chromatography, gas chromatography/mass spectrometry, and nuclear magnetic resonance spectroscopy. We identified as major oxygenation products triacylglycerols that contained one, two, or three 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid residues. During germination, the amount of oxygenated lipids increased strongly, reaching a maximum after 72 h and declining afterward. The highly specific pattern of hydroperoxy lipids formed suggested the involvement of the lipid body lipoxygenase in their biosynthesis.These data suggest that this lipoxygenase may play an important role during the germination process of cucumber and other plants and support our previous hypothesis that the specific oxygenation of the storage lipids may initiate their mobilization as a carbon and energy source for the growing seedling.
Publikation

Feussner, I.; Porzel, A.; Wasternack, C.; Kühn, H.; Quantitative Analyse von Lipoxygenase-Metaboliten in Lipiden durch NMR-Spektroskopie BIOspektrum 3, 54-58, (1997)

0
IPB Mainnav Search